Genetic variation in a heat shock transcription factor modulates cold tolerance in maize

被引:4
|
作者
Gao, Lei [1 ]
Pan, Lingling [2 ]
Shi, Yiting [1 ]
Zeng, Rong [1 ]
Li, Zhuoyang [1 ]
Zhang, Xuan [2 ]
Zhao, Xiaoming [1 ]
Gong, Xinru [3 ,4 ]
Huang, Wei [2 ]
Yang, Xiaohong [2 ]
Lai, Jinsheng [2 ]
Zuo, Jianru [3 ,4 ]
Gong, Zhizhong [1 ]
Wang, Xiqing [1 ]
Jin, Weiwei [2 ]
Dong, Zhaobin [2 ]
Yang, Shuhua [1 ]
机构
[1] China Agr Univ, Frontiers Sci Ctr Mol Design Breeding, Ctr Crop Funct Genom & Mol Breeding, State Key Lab Plant Environm Resilience,Coll Biol, Beijing 100193, Peoples R China
[2] China Agr Univ, Natl Maize Improvement Ctr, Frontiers Sci Ctr Mol Design Breeding, Dept Plant Genet & Breeding,State Key Lab Maize Bi, Beijing, Peoples R China
[3] Chinese Acad Sci, State Key Lab Plant Genom, Inst Genet & Dev Biol, Beijing 100101, Peoples R China
[4] Chinese Acad Sci, Inst Genet & Dev Biol, Natl Plant Gene Res Ctr, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
heat shock factor HSF21; cold tolerance; natural variation; bZIP68; lipid metabolism; maize; QUANTITATIVE TRAIT LOCI; CHILLING TOLERANCE; FREEZING TOLERANCE; LIPID CHANGES; STRESS; MEMBRANE; ARCHITECTURE; IMPACTS; PLANTS; YIELD;
D O I
10.1016/j.molp.2024.07.015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Understanding how maize (Zea mays) responds to cold stress is crucial for facilitating breeding programs of cold-tolerant varieties. Despite extensive utilization of the genome-wide association study (GWAS) approach for exploring favorable natural alleles associated with maize cold tolerance, few studies have successfully identified candidate genes that contribute to maize cold tolerance. In this study, we used a diverse panel of inbred maize lines collected from different germplasm sources to perform a GWAS on variations in the relative injured area of maize true leaves during cold stress-a trait very closely correlated with maize cold tolerance. We identified HSF21, which encodes a B-class heat shock transcription factor (HSF) that positively regulates cold tolerance at both the seedling and germination stages. Natural variations in the promoter of the cold-tolerant HSF21(Hap1) allele led to increased HSF21 expression under cold stress by inhibiting binding of the basic leucine zipper bZIP68 transcription factor, a negative regulator of cold tolerance. By integrating transcriptome deep sequencing, DNA affinity purification sequencing, and targeted lipidomic analysis, we revealed the function of HSF21 in regulating lipid metabolism homeostasis to modulate cold tolerance in maize. In addition, we found that HSF21 confers maize cold tolerance without incurring yield penalties. Collectively, this study establishes HSF21 as a key regulator that enhances cold tolerance in maize, providing valuable genetic resources for breeding of cold-tolerant maize varieties.
引用
收藏
页码:1423 / 1438
页数:16
相关论文
共 50 条
  • [21] A maize heat shock factor ZmHsf11 negatively regulates heat stress tolerance in transgenic plants
    Qin, Qianqian
    Zhao, Yujun
    Zhang, Jiajun
    Chen, Li
    Si, Weina
    Jiang, Haiyang
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [22] A maize heat shock factor ZmHsf11 negatively regulates heat stress tolerance in transgenic plants
    Qianqian Qin
    Yujun Zhao
    Jiajun Zhang
    Li Chen
    Weina Si
    Haiyang Jiang
    BMC Plant Biology, 22
  • [23] Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis
    Li, Hui-cong
    Zhang, Hua-ning
    Li, Guo-liang
    Liu, Zi-hui
    Zhang, Yan-min
    Zhang, Hong-mei
    Guo, Xiu-lin
    FUNCTIONAL PLANT BIOLOGY, 2015, 42 (11) : 1080 - 1091
  • [24] Modulation of tolerance by mutant heat shock transcription factors
    Xia, WL
    Vilaboa, N
    Martin, JL
    Mestril, R
    Guo, YL
    Voellmy, R
    CELL STRESS & CHAPERONES, 1999, 4 (01): : 8 - 18
  • [25] Rare genetic variation at transcription factor binding sites modulates local DNA methylation profiles
    Martin-Trujillo, Alejandro
    Patel, Nihir
    Richter, Felix
    Jadhav, Bharati
    Garg, Paras
    Morton, Sarah U.
    McKean, David M.
    DePalma, Steven R.
    Goldmuntz, Elizabeth
    Gruber, Dorota
    Kim, Richard
    Newburger, Jane W.
    Porter, George A., Jr.
    Giardini, Alessandro
    Bernstein, Daniel
    Tristani-Firouzi, Martin
    Seidman, Jonathan G.
    Seidman, Christine E.
    Chung, Wendy K.
    Gelb, Bruce D.
    Sharp, Andrew J.
    PLOS GENETICS, 2020, 16 (11):
  • [26] GENOME SIZE VARIATION IN MAIZE POPULATIONS SELECTED FOR COLD TOLERANCE
    MCMURPHY, LM
    RAYBURN, AL
    PLANT BREEDING, 1991, 106 (03) : 190 - 195
  • [27] Molecular Evolution and Genetic Variation of G2-Like Transcription Factor Genes in Maize
    Liu, Fang
    Xu, Yunjian
    Han, Guomin
    Zhou, Lingyan
    Ali, Asif
    Zhu, Suwen
    Li, Xiaoyu
    PLOS ONE, 2016, 11 (08):
  • [28] Purification of heat shock transcription factor of Drosophila
    Zhong, M
    Wisniewski, J
    Fritsch, M
    Mizuguchi, G
    Orosz, A
    Jedlicka, P
    Wu, C
    RNA POLYMERASE AND ASSOCIATED FACTORS, PT B, 1996, 274 : 113 - 119
  • [29] Alternative splicing regulates the transcriptional activity of Drosophila heat shock transcription factor in response to heat/cold stress
    Fujikake, N
    Nagai, Y
    Popiel, HA
    Kano, H
    Yamaguchi, M
    Toda, T
    FEBS LETTERS, 2005, 579 (17) : 3842 - 3848
  • [30] Phosphorylation of Drosophila heat shock transcription factor
    Fritsch, N
    Wu, C
    CELL STRESS & CHAPERONES, 1999, 4 (02): : 102 - 117