Integrable Discretization and Multi-soliton Solutions of Negative Order AKNS Equation

被引:0
|
作者
Amjad, Zeeshan [1 ]
Haider, Bushra [2 ]
Ma, Wen-Xiu [1 ,3 ,4 ,5 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ Punjab, Dept Phys, Quaid E Azam Campus, Lahore 54590, Pakistan
[3] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[4] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[5] North West Univ, Dept Math Sci, Mat Sci Innovat & Modelling, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
关键词
Discrete integrable systems; Darboux transformation; Negative order AKNS; Soliton solution; PROPAGATION;
D O I
10.1007/s12346-024-01140-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose the discrete and two semi-discrete versions of negative order AKNS equation through the discretization of associated Lax pair of continuous negative order AKNS equation. Discrete and semi-discrete multi-soliton solutions are computed by using Darboux transformation and are presented in the form of quasideterminants. The dynamics of one soliton and interaction of two soliton solutions for negative order AKNS equation are presented in the end.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] The multi-soliton and multiple-poles soliton solutions for the six-order nonlinear Schrodinger equation
    Xu, Mengtao
    Liu, Nan
    Guo, Chunxiao
    NONLINEAR DYNAMICS, 2021, 105 (02) : 1741 - 1751
  • [22] Multi-soliton solutions of the Konopelchenko-Dubrovsky equation
    Lin, J
    Lou, SY
    Wang, KL
    CHINESE PHYSICS LETTERS, 2001, 18 (09) : 1173 - 1175
  • [23] Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrodinger equation
    Guo, Rui
    Hao, Hui-Qin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (09) : 2426 - 2435
  • [24] Multi-Soliton and Rational Solutions for the Extended Fifth-Order KdV Equation in Fluids
    Meng, Gao-Qing
    Gao, Yi-Tian
    Zuo, Da-Wei
    Shen, Yu-Jia
    Sun, Yu-Hao
    Yu, Xin
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2015, 70 (07): : 559 - 566
  • [25] The multi-soliton and multiple-poles soliton solutions for the six-order nonlinear Schrödinger equation
    Mengtao Xu
    Nan Liu
    Chunxiao Guo
    Nonlinear Dynamics, 2021, 105 : 1741 - 1751
  • [26] General multi-soliton and higher-order soliton solutions for a novel nonlocal Lakshmanan–Porsezian–Daniel equation
    Minmin Wang
    Yong Chen
    Nonlinear Dynamics, 2023, 111 : 655 - 669
  • [27] Multi-Soliton Solutions of the Generalized Sawada-Kotera Equation
    Zuo, Da-Wei
    Mo, Hui-Xia
    Zhou, Hui-Ping
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (04): : 305 - 309
  • [28] The hierarchy of multi-soliton solutions of the derivative nonlinear Schrodinger equation
    Steudel, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07): : 1931 - 1946
  • [29] Explicit multi-soliton solutions for the KdV equation by darboux transformation
    Huang, Y. (huangying201@yahoo.cn), 1600, International Association of Engineers (43):
  • [30] Multi-soliton solutions of the BBM equation arisen in shallow water
    Alsayyed, O.
    Jaradat, H. M.
    Jaradat, M. M. M.
    Mustafa, Zead
    Shatat, Feras
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (04): : 1807 - 1814