Conditions for separability in multiqubit systems with an accelerating qubit using a conditional entropy

被引:1
|
作者
Reji, Harsha Miriam [1 ]
Hegde, Hemant S. [1 ]
Prabhu, R. [1 ]
机构
[1] Indian Inst Technol Dharwad, Dept Phys, Dharwad 580007, Karnataka, India
关键词
RELATIVISTIC QUANTUM METROLOGY; SPEED LIMIT TIME; TRIPARTITE ENTANGLEMENT; INFORMATION;
D O I
10.1103/PhysRevA.110.032403
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the separability in multiqubit pure and mixed Greenberger-Horne-Zeilinger (GHZ) and W states with an accelerating qubit using the Abe-Rajagopal (AR) q-conditional entropy. We observe that the pure multiqubit GHZ and W states in the inertial-noninertial bipartition with one of their qubits accelerated will remain nonseparable irrespective of the qubit's acceleration. In these systems, we capture the variation of their nonseparability with respect to the acceleration of the qubit and the AR q-conditional entropy parameter q. However, in the corresponding multiqubit mixed states obtained by introducing a global noise to the above pure states, we could get stronger conditions on their separability in the inertial-noninertial bipartition, in terms of the acceleration of the qubit, the noise parameter, and the number of qubits in the system, in the asymptotic limit of the parameter q. These conditions obtained from the AR q-conditional entropy serve as necessary conditions for separability in such multiqubit states with a relativistic qubit.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Bipartite separability of symmetric N-qubit noisy states using conditional quantum relative Tsallis entropy
    Nayak, Anantha S.
    Sudha
    Rajagopal, A. K.
    Devi, A. R. Usha
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 443 : 286 - 295
  • [2] Conditional states and entropy in qudit-qubit systems
    Bilkis, M.
    Canosa, N.
    Rossignoli, R.
    Gigena, N.
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [3] Separability criterion of tripartite qubit systems
    Yu, CS
    Song, HS
    PHYSICAL REVIEW A, 2005, 72 (02):
  • [4] Separability of a family of one-parameter W and Greenberger-Horne-Zeilinger multiqubit states using the Abe-Rajagopal q-conditional-entropy approach
    Prabhu, R.
    Devi, A. R. Usha
    Padmanabha, G.
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [5] Tsallis entropy and entanglement constraints in multiqubit systems
    Kim, Jeong San
    PHYSICAL REVIEW A, 2010, 81 (06):
  • [6] Generalized conditional entropy optimization for qudit-qubit states
    Gigena, N.
    Rossignoli, R.
    PHYSICAL REVIEW A, 2014, 90 (04):
  • [7] Geometry of two-qubit states with negative conditional entropy
    Friis, Nicolai
    Bulusu, Sridhar
    Bertlmann, Reinhold A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (12)
  • [8] Exact algebraic separability criterion for two-qubit systems
    Fujikawa, Kazuo
    Oh, C. H.
    MODERN PHYSICS LETTERS A, 2017, 32 (11)
  • [9] Separability and entanglement of n-qubit and a qubit and a qudit using Hilbert-Schmidt decompositions
    Ben-Aryeh, Y.
    Mann, A.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2016, 14 (05)
  • [10] General monogamy of Tsallis q-entropy entanglement in multiqubit systems
    Luo, Yu
    Tian, Tian
    Shao, Lian-He
    Li, Yongming
    PHYSICAL REVIEW A, 2016, 93 (06)