Enhanced ordered growth of Ni-Co LDH nanosheets on N-doped carbon through nitrogen configuration tuning for high-performance asymmetric supercapacitors

被引:1
|
作者
Wang, Jiebin [1 ]
Zhang, Qian [1 ,2 ]
Zhang, Yude [1 ,2 ]
Li, Yan [1 ]
Gao, Rongjun [1 ]
Li, Ru [1 ]
Li, Yuanyuan [1 ]
Zhang, Baimei [1 ,2 ,3 ]
机构
[1] Henan Polytech Univ, Sch Chem & Chem Engn, Henan Key Lab Coal Green Convers, Jiaozuo 454000, Peoples R China
[2] Collaborat Innovat Ctr Coal Work Safety Henan Prov, Jiaozuo 454000, Peoples R China
[3] Henan Polytech Univ, Sch Civil Engn, Jiaozuo 454000, Peoples R China
基金
中国国家自然科学基金;
关键词
Nickel-cobalt LDH; Nitrogen configuration tuning; Assembled growth; Pyridine-N enriched carbon; Asymmetric supercapacitors; LAYERED DOUBLE HYDROXIDE; ENERGY-STORAGE; ELECTRODE MATERIAL; MICROSPHERES; FABRICATION; COMPOSITES; GRAPHENE; FOAM;
D O I
10.1016/j.est.2024.113180
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The introduction of carbon is considered a promising strategy to improve the cycling stability of Nickel-cobalt layered double hydroxide (NC-LDH) in supercapacitors. While, the construction of uniform and strong interface bonding is a major challenge for this strategy. Herein, a pyridinic N enriched carbon (PNC) is prepared by simple heat treatment of popcorn to adjust the nitrogen configuration and used as a substrate to load NC-LDH. The pyridinic N is favored to form chemical bonds of N-O-Ni/Co with NC-LDH and enhance the ordered growth of NC-LDH on the PNC surface. This unique NC-LDH/PNC hybrid benefits much more active sites and improved structure stability. Furthermore, the electrical conductivity and charge transfer ability are significantly enhanced due to the sufficient coupling between NC-LDH and PNC. As a consequence, the NC-LDH/PNC demonstrates a much higher capacitance of 877.5C/g (2193 F g- 1) at 1 A g- 1 and an enhanced rate of 62.4% at a greater current density of 20 A g- 1 compared with those of NC-LDH (624.5C g- 1 and 48.3 %). The NC-LDH/PNC-based asymmetric supercapacitor (ASC) obtains a remarkable specific capacitance of 343 F g- 1 at 1 A g- 1 and energy density of 121.9 Wh kg- 1 at 798.2 W kg- 1. More importantly, this NC-LDH/PNC based ASC exhibits significantly enhanced cycle stability of 90.2 % after 4000 cycles, compared with that of NC-LDH-based ASC (56.5 %).
引用
收藏
页数:12
相关论文
共 50 条
  • [42] Hierarchical Nanostructures of Nitrogen-Doped Porous Carbon Polyhedrons Confined in Carbon Nanosheets for High-Performance Supercapacitors
    Zhao, Zhe
    Liu, Siliang
    Zhu, Jixin
    Xu, Jingsan
    Li, Le
    Huang, Zhaoqi
    Zhang, Chao
    Liu, Tianxi
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (23) : 19871 - 19880
  • [43] Nitrogen/phosphorus co-doped nonporous carbon nanofibers for high-performance supercapacitors
    Yan, Xiaodong
    Liu, Yuan
    Fan, Xiaorong
    Jia, Xiaolong
    Yu, Yunhua
    Yang, Xiaoping
    JOURNAL OF POWER SOURCES, 2014, 248 : 745 - 751
  • [44] Core-shell structural PANI-derived carbon@Co-Ni LDH electrode for high-performance asymmetric supercapacitors
    Cao, Junming
    Li, La
    Xi, Yunlong
    Li, Junzhi
    Pan, Xuexue
    Chen, Duo
    Han, Wei
    SUSTAINABLE ENERGY & FUELS, 2018, 2 (06): : 1350 - 1355
  • [45] Hydrogels that couple nitrogen-enriched graphene with Ni(OH)2 nanosheets for high-performance asymmetric supercapacitors
    Li, Jing
    Hao, Huilian
    Wang, Jianjun
    Li, Wenyao
    Shen, Wenzhong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 782 : 516 - 524
  • [46] Facile Preparation of 2D Nitrogen and Sulfur Co-Doped Porous Carbon Nanosheets for High-Performance Supercapacitors
    Wang, Guiqiang
    Liu, Jieqiong
    Dong, Weinan
    Yan, Chao
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (12) : A2459 - A2466
  • [47] Porous ball-in-ball N-doped carbon loading Co nanoparticles for high-performance asymmetric capacitor
    Shi, Jiying
    Zang, Linlin
    Zhang, Long
    Wang, Jingzhen
    Xu, Qing
    Zhang, Yanhong
    Sun, Liguo
    DIAMOND AND RELATED MATERIALS, 2023, 133
  • [48] Facile fabrication of Co2CuS4 nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors
    Guo, Meng
    Balamurugan, Jayaraman
    Tran Duy Thanh
    Kim, Nam Hoon
    Lee, Joong Hee
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (44) : 17560 - 17571
  • [49] High-Performance Flexible Asymmetric Supercapacitors Facilitated by N-doped Porous Vertical Graphene Nanomesh Arrays
    Chi, Kai
    Zhang, Xiangyu
    Tian, Xin
    Zhang, Zheye
    Wu, Zhu
    Xiao, Fei
    Wang, Shuai
    CHEMELECTROCHEM, 2020, 7 (02): : 406 - 413
  • [50] Co-ZIF derived porous NiCo-LDH nanosheets/N doped carbon foam for high-performance supercapacitor
    Liu Y.
    Wang Y.
    Shi C.
    Chen Y.
    Li D.
    He Z.
    Wang C.
    Guo L.
    Ma J.
    Carbon, 2021, 165 : 129 - 138