Eye tracking is more sensitive than skin conductance response in detecting mild environmental stimuli
被引:0
|
作者:
Khazaei, Saman
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Biomed Engn, 433 1st Ave, New York, NY 10010 USA
NYU Langone Hlth, Tech4Health Inst, 433 1st Ave, New York, NY 10010 USANYU, Dept Biomed Engn, 433 1st Ave, New York, NY 10010 USA
Khazaei, Saman
[1
,2
]
Faghih, Rose T.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Biomed Engn, 433 1st Ave, New York, NY 10010 USA
NYU Langone Hlth, Tech4Health Inst, 433 1st Ave, New York, NY 10010 USANYU, Dept Biomed Engn, 433 1st Ave, New York, NY 10010 USA
Faghih, Rose T.
[1
,2
]
机构:
[1] NYU, Dept Biomed Engn, 433 1st Ave, New York, NY 10010 USA
[2] NYU Langone Hlth, Tech4Health Inst, 433 1st Ave, New York, NY 10010 USA
The skin conductance (SC) and eye tracking data are two potential arousal-related psychophysiological signals that can serve as the interoceptive unconditioned response to aversive stimuli (e.g. electric shocks). The current research investigates the sensitivity of these signals in detecting mild electric shock by decoding the hidden arousal and interoceptive awareness (IA) states. While well-established frameworks exist to decode the arousal state from the SC signal, there is a lack of a systematic approach that decodes the IA state from pupillometry and eye gaze measurements. We extract the physiological-based features from eye tracking data to recover the IA-related neural activity. Employing a Bayesian filtering framework, we decode the IA state in fear conditioning and extinction experiments where mild electric shock is used. We independently decode the underlying arousal state using binary and marked point process (MPP) observations derived from concurrently collected SC data. Eight of 11 subjects present a significantly (P-value <0.001) higher IA state in trials that were always accompanied by electric shock (CS+US+) compared to trials that were never accompanied by electric shock (CS-). According to the decoded SC-based arousal state, only five (binary observation) and four (MPP observation) subjects present a significantly higher arousal state in CS+US+ trials than CS- trials. In conclusion, the decoded hidden brain state from eye tracking data better agrees with the presented mild stimuli. Tracking IA state from eye tracking data can lead to the development of contactless monitors for neuropsychiatric and neurodegenerative disorders.
机构:
Univ Calif Davis, Brain Mind & Behav Unit, Calif Natl Primate Res Ctr, Davis, CA 95616 USA
Univ Calif Davis, Dept Psychiat & Behav Sci, Davis, CA 95616 USAUniv Calif Davis, Brain Mind & Behav Unit, Calif Natl Primate Res Ctr, Davis, CA 95616 USA
Machado, Christopher J.
Nelson, Eric E.
论文数: 0引用数: 0
h-index: 0
机构:
NIMH, Mood & Anxiety Disorders Program, Bethesda, MD 20892 USAUniv Calif Davis, Brain Mind & Behav Unit, Calif Natl Primate Res Ctr, Davis, CA 95616 USA