Multi-Task Spatial-Temporal Graph Auto-Encoder for Hand Motion Denoising
被引:0
|
作者:
Zhou, Kanglei
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R ChinaBeihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
Zhou, Kanglei
[1
]
Shum, Hubert P. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Durham, Dept Comp Sci, Durham DH1 3LE, EnglandBeihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
Shum, Hubert P. H.
[2
]
Li, Frederick W. B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Durham, Dept Comp Sci, Durham DH1 3LE, EnglandBeihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
Li, Frederick W. B.
[2
]
Liang, Xiaohui
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
Zhongguancun Lab, Beijing 100081, Peoples R ChinaBeihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
Liang, Xiaohui
[1
,3
]
机构:
[1] Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[2] Univ Durham, Dept Comp Sci, Durham DH1 3LE, England
[3] Zhongguancun Lab, Beijing 100081, Peoples R China
Graph convolutional network;
hand motion denoising;
hand motion prediction;
multi-task learning;
GENERATIVE ADVERSARIAL NETWORK;
D O I:
10.1109/TVCG.2023.3337868
中图分类号:
TP31 [计算机软件];
学科分类号:
081202 ;
0835 ;
摘要:
In many human-computer interaction applications, fast and accurate hand tracking is necessary for an immersive experience. However, raw hand motion data can be flawed due to issues such as joint occlusions and high-frequency noise, hindering the interaction. Using only current motion for interaction can lead to lag, so predicting future movement is crucial for a faster response. Our solution is the Multi-task Spatial-Temporal Graph Auto-Encoder (Multi-STGAE), a model that accurately denoises and predicts hand motion by exploiting the inter-dependency of both tasks. The model ensures a stable and accurate prediction through denoising while maintaining motion dynamics to avoid over-smoothed motion and alleviate time delays through prediction. A gate mechanism is integrated to prevent negative transfer between tasks and further boost multi-task performance. Multi-STGAE also includes a spatial-temporal graph autoencoder block, which models hand structures and motion coherence through graph convolutional networks, reducing noise while preserving hand physiology. Additionally, we design a novel hand partition strategy and hand bone loss to improve natural hand motion generation. We validate the effectiveness of our proposed method by contributing two large-scale datasets with a data corruption algorithm based on two benchmark datasets. To evaluate the natural characteristics of the denoised and predicted hand motion, we propose two structural metrics. Experimental results show that our method outperforms the state-of-the-art, showcasing how the multi-task framework enables mutual benefits between denoising and prediction.
机构:
Univ Chinese Acad Sci, Shenzhen Inst Adv Technol, Res Ctr Med AI, Shenzhen 518055, Peoples R China
Univ Chinese Acad Sci, Shenzhen Coll Adv Technol, Shenzhen 518055, Peoples R ChinaUniv Chinese Acad Sci, Shenzhen Inst Adv Technol, Res Ctr Med AI, Shenzhen 518055, Peoples R China
Li, Yuchong
论文数: 引用数:
h-index:
机构:
Xia, Tong
Luo, Huoling
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Shenzhen Inst Adv Technol, Res Ctr Med AI, Shenzhen 518055, Peoples R ChinaUniv Chinese Acad Sci, Shenzhen Inst Adv Technol, Res Ctr Med AI, Shenzhen 518055, Peoples R China
Luo, Huoling
He, Baochun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Shenzhen Inst Adv Technol, Res Ctr Med AI, Shenzhen 518055, Peoples R ChinaUniv Chinese Acad Sci, Shenzhen Inst Adv Technol, Res Ctr Med AI, Shenzhen 518055, Peoples R China
He, Baochun
Jia, Fucang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Shenzhen Inst Adv Technol, Res Ctr Med AI, Shenzhen 518055, Peoples R ChinaUniv Chinese Acad Sci, Shenzhen Inst Adv Technol, Res Ctr Med AI, Shenzhen 518055, Peoples R China
机构:
Zhejiang Univ, State Key Lab Ind Control Technol, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
Zhejiang Univ, Key Lab CS&AUS Zhejiang Prov, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Ind Control Technol, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
Li, Shizhong
Meng, Wenchao
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Ind Control Technol, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
Zhejiang Univ, Key Lab CS&AUS Zhejiang Prov, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Ind Control Technol, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
Meng, Wenchao
He, Shibo
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Ind Control Technol, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
Zhejiang Univ, Key Lab CS&AUS Zhejiang Prov, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Ind Control Technol, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
He, Shibo
Bi, Jichao
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Inst Ind & Informat Technol, Hangzhou 310000, Peoples R ChinaZhejiang Univ, State Key Lab Ind Control Technol, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
Bi, Jichao
Liu, Guanglun
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Ind Control Technol, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
Zhejiang Univ, Key Lab CS&AUS Zhejiang Prov, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Ind Control Technol, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China