Time-delay Feedback Control of Fractional Chaotic Rossler Oscillator

被引:0
|
作者
Das, D. [1 ,2 ]
Taralova, I. [1 ]
Loiseau, J. J. [1 ]
机构
[1] Nantes Univ, Ecole Cent Nantes, CNRS, LS2N,UMR6004, 1 Rue Noe, F-44321 Nantes, France
[2] Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, India
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 05期
关键词
Chaotic fractional-order Rossler Oscillator; Grunwald-Letnikov Characterization; Stabilization; Eigenvalues; Feedback gain; Time-delay;
D O I
10.1016/j.ifacol.2024.07.069
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this research, we explore the utilization of the time-delayed feedback method to stabilize unstable steady states and aperiodic orbits within the chaotic fractional-order Rossler Oscillator. Employing the time-delay feedback control algorithm, we identify specific parameter ranges enabling the successful stabilization of unstable equilibria, considering variations in both feedback gain and time delay. Unlike previous research works where Caputo and Riemann-Liouville characterization of fractional derivatives are used, we are using Grunwald-Letnikov (GL) characterization because of its simplicity and ease of implementation and demonstrating the stability using the analytical and numerical analysis and plots of eigenvalues. Additionally, our analysis highlight the effectiveness of a sinusoidally modulated time delay in the control law, significantly expanding the stability region of steady states beyond the capabilities of the traditional time-delayed feedback scheme with a constant delay. Furthermore, the analysis of eigenvalues before and after applying the control strategy offers tangible insights into the system's stability dynamics. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:90 / 95
页数:6
相关论文
共 50 条
  • [21] Research of Time-Delay Chaotic Systems via Linear Feedback
    Wang, Hua
    Wang, Xin
    Shen, Xianhai
    Zhang, Xuliang
    ASIASIM 2012, PT II, 2012, 324 : 238 - 247
  • [22] Time-Delay Feedback Control of an Oscillatory Medium
    Stich, Michael
    Beta, Carsten
    BIOLOGICAL SYSTEMS: NONLINEAR DYNAMICS APPROACH, 2019, 20 : 1 - 17
  • [23] Chaos control with intermittent time-delay feedback
    Zhou, Chun
    RESEARCHES AND PROGRESSES OF MODERN TECHNOLOGY ON SILK, TEXTILE AND MECHANICALS II, 2007, : 251 - 252
  • [24] Stabilization of Uncertain Fractional Memristor Chaotic Time-Delay System Based on Fractional Order Sliding Mode Control
    Dawei Ding
    Fangfang Liu
    Nian Wang
    Dong Liang
    JournalofHarbinInstituteofTechnology(NewSeries), 2020, 27 (04) : 74 - 83
  • [25] Adaptive control of uncertain time-delay chaotic systems
    Zhuhong ZHANG (Department of Mathematics
    JournalofControlTheoryandApplications, 2005, (04) : 357 - 363
  • [26] Control of chaotic spatiotemporal spiking by time-delay autosynchronization
    Fanceschini, G
    Bose, S
    Schöll, E
    PHYSICAL REVIEW E, 1999, 60 (05): : 5426 - 5434
  • [27] Adaptive control of uncertain time-delay chaotic systems
    Zhuhong Zhang
    Journal of Control Theory and Applications, 2005, 3 (4): : 357 - 363
  • [28] Impulsive Control and Synchronization of Time-delay Chaotic System
    Yan, Yan
    Gui, Zhanji
    Wang, Kaihua
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY, ENVIRONMENT AND CHEMICAL ENGINEERING (AEECE 2016), 2016, 89 : 353 - 358
  • [29] A Design of Control Strategy for Chaotic Systems with Time-Delay
    Xu Jiang
    Li Tao
    ENGINEERING AND MANUFACTURING TECHNOLOGIES, 2014, 541-542 : 1248 - +
  • [30] Guaranteed cost control of time-delay chaotic systems
    Park, JH
    Kwon, OM
    CHAOS SOLITONS & FRACTALS, 2006, 27 (04) : 1011 - 1018