Combinatorics of nondeterministic walks of the Dyck and Motzkin type

被引:0
|
作者
de Panafieu, Elie [1 ,2 ]
Lamali, Mohamed Lamine [3 ]
Wallner, Michael [3 ]
机构
[1] Nokia Bell Labs, Massy, France
[2] Lincs, Paris, France
[3] Univ Bordeaux, LaBRI, Bordeaux, France
基金
奥地利科学基金会;
关键词
Random walks; analytic combinatorics; generating functions; networking; encapsulation; SERIES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper introduces nondeterministic walks, a new variant of one-dimensional discrete walks. At each step, a nondeterministic walk draws a random set of steps from a predefined set of sets and explores all possible extensions in parallel. We introduce our new model on Dyck steps with the nondeterministic step set {{-1}, {1}, {-1, 1}} and Motzkin steps with the nondeterministic step set {{-1}, {0}, {1}, {-1, 0}, {-1, 1}, {-0, 1}, {-1, 0, 1}}. For general lists of step sets and a given length, we express the generating function of nondeterministic walks where at least one of the walks explored in parallel is a bridge (ends at the origin). In the particular cases of Dyck and Motzkin steps, we also compute the asymptotic probability that at least one of those parallel walks is a meander (stays nonnegative) or an excursion (stays nonnegative and ends at the origin). This research is motivated by the study of networks involving encapsulations and decapsulations of protocols. Our results are obtained using generating functions and analytic combinatorics.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] ALGEBRAIC COMBINATORICS ON TRACE MONOIDS: EXTENDING NUMBER THEORY TO WALKS ON GRAPHS
    Giscard, P. -L.
    Rochet, P.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (02) : 1428 - 1453
  • [22] OPTIMAL PROBABILITY INEQUALITIES FOR RANDOM WALKS RELATED TO PROBLEMS IN EXTREMAL COMBINATORICS
    Dzindzalieta, D.
    Juskevicius, T.
    Sileikis, M.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (02) : 828 - 837
  • [23] Combinatorics of exceptional sequences in type A
    Garver, Alexander
    Igusa, Kiyoshi
    Matherne, Jacob P.
    Ostroff, Jonah
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (01):
  • [24] A THEOREM OF MOLIEN TYPE IN COMBINATORICS
    TAMBOUR, T
    EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (02) : 197 - 199
  • [25] Quantum phase transitions in a frustration-free spin chain based on modified Motzkin walks
    Sugino, Fumihiko
    Padmanabhan, Pramod
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (3-4): : 269 - 284
  • [26] Quantum phase transitions in a frustration-free spin chain based on modified Motzkin walks
    Fumihiko Sugino
    Pramod Padmanabhan
    The European Physical Journal Special Topics, 2018, 227 : 269 - 284
  • [27] Combinatorics on permutation tableaux of type A and type B
    Corteel, Sylvie
    Kim, Jang Soo
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (04) : 563 - 579
  • [28] A Heyting Algebra on Dyck Paths of Type A and B
    Henri Mühle
    Order, 2017, 34 : 327 - 348
  • [29] A MOTZKIN-TYPE THEOREM FOR CLOSED NONCONVEX SETS
    CALABI, L
    HARTNETT, WE
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (06) : 1495 - &
  • [30] Embedding of shifts of finite type into the Dyck shift
    Hamachi, T
    Inoue, K
    MONATSHEFTE FUR MATHEMATIK, 2005, 145 (02): : 107 - 129