Combinatorics of nondeterministic walks of the Dyck and Motzkin type

被引:0
|
作者
de Panafieu, Elie [1 ,2 ]
Lamali, Mohamed Lamine [3 ]
Wallner, Michael [3 ]
机构
[1] Nokia Bell Labs, Massy, France
[2] Lincs, Paris, France
[3] Univ Bordeaux, LaBRI, Bordeaux, France
基金
奥地利科学基金会;
关键词
Random walks; analytic combinatorics; generating functions; networking; encapsulation; SERIES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper introduces nondeterministic walks, a new variant of one-dimensional discrete walks. At each step, a nondeterministic walk draws a random set of steps from a predefined set of sets and explores all possible extensions in parallel. We introduce our new model on Dyck steps with the nondeterministic step set {{-1}, {1}, {-1, 1}} and Motzkin steps with the nondeterministic step set {{-1}, {0}, {1}, {-1, 0}, {-1, 1}, {-0, 1}, {-1, 0, 1}}. For general lists of step sets and a given length, we express the generating function of nondeterministic walks where at least one of the walks explored in parallel is a bridge (ends at the origin). In the particular cases of Dyck and Motzkin steps, we also compute the asymptotic probability that at least one of those parallel walks is a meander (stays nonnegative) or an excursion (stays nonnegative and ends at the origin). This research is motivated by the study of networks involving encapsulations and decapsulations of protocols. Our results are obtained using generating functions and analytic combinatorics.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Combinatorics of generalized Dyck and Motzkin paths
    Gan, Li
    Ouvry, Stephane
    Polychronakos, Alexios P.
    PHYSICAL REVIEW E, 2022, 106 (04)
  • [2] DYCK AND MOTZKIN TRIANGLES WITH MULTIPLICITIES
    Meshkov, V. R.
    Omelchenko, A. V.
    Petrov, M. I.
    Tropp, E. A.
    MOSCOW MATHEMATICAL JOURNAL, 2010, 10 (03) : 611 - 628
  • [3] Combinatorics of Generalized Motzkin Numbers
    Wang, Yi
    Zhang, Zhi-Hai
    JOURNAL OF INTEGER SEQUENCES, 2015, 18 (02)
  • [4] Dyck paths, Motzkin paths and traffic jams
    Blythe, RA
    Janke, W
    Johnston, DA
    Kenna, R
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
  • [5] Bijections from Dyck and Motzkin meanders with catastrophes to pattern avoiding Dyck paths
    Baril, Jean-Luc
    Kirgizov, Sergey
    DISCRETE MATHEMATICS LETTERS, 2021, 7 : 5 - 10
  • [6] Dyck Paths, Motzkin Paths, and the Binomial Transform
    Capparelli, Stefano
    Del Fra, Alberto
    JOURNAL OF INTEGER SEQUENCES, 2015, 18 (08)
  • [7] Motzkin Combinatorics in Linear Degenerations of the Flag Variety
    Irelli, Giovanni Cerulli
    Esposito, Francesco
    Marietti, Mario
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (22) : 19184 - 19204
  • [8] Enumerative Combinatorics of Intervals in the Dyck Pattern Poset
    Antonio Bernini
    Matteo Cervetti
    Luca Ferrari
    Einar Steingrímsson
    Order, 2021, 38 : 473 - 487
  • [9] Enumerative Combinatorics of Intervals in the Dyck Pattern Poset
    Bernini, Antonio
    Cervetti, Matteo
    Ferrari, Luca
    Steingrimsson, Einar
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2021, 38 (03): : 473 - 487
  • [10] Combinatorics of the zeta map on rational Dyck paths
    Ceballos, Cesar
    Denton, Tom
    Hanusa, Christopher R. H.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 141 : 33 - 77