Theoretical study of CO2 hydrogenation to methanol on modified Au/In2O3 catalysts: Effects of hydrogen spillover and activation energy prediction for hydrogen transfer

被引:3
|
作者
Qin, Huang [1 ]
Zhang, Hai [1 ]
Wang, Kai [1 ]
Wang, Xingzi [1 ]
Fan, Weidong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon dioxide; Methanol; Hydrogen spillover; DFT; Machine learning; SISSO; OF-THE-ART; SELECTIVE HYDROGENATION; SURFACE; IN2O3(110); OXIDE; FUTURE; SITES; DFT;
D O I
10.1016/j.susc.2024.122469
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the increasing attention in environmental issues caused by CO2 emissions, methanol conversion by CO2 hydrogenation is an effective strategy to solve this existing energy dilemma. The rationale behind hydrogen spillover on methanol synthesis is unraveled via density functional theory (DFT) calculations in this work, furthermore, the activation energy of hydrogen transfer process as affected by spillover is also summarized in a general paradigm for facilitating the understanding of hydrogenation characteristics. The results demonstrate that the spillover strategy significantly facilitates the hydrogenation reaction by supplying available hydrogen adatoms. This effect is particularly pronounced during the stage when OH is formed directly at the substrate site and combines with H to produce H2O, leading to a substantial reduction in activation energy from the initial 3.74 eV to 0.78 eV. In addition, a comprehensive predictive model for the kinetic characteristics of hydrogen spillover process is established based on the machine learning algorithm and SISSO guidance. By employing the combined approach of SISSO and neural network, we have achieved a stable prediction performance for activation energy with R2 = 0.99 and RMSE = 0.07eV. The variable of ChgFSAu is identified as the most representative factor in describing the activation energy, demonstrating a correlation coefficient of -0.60. The extended multidimensional expression of DistAu further highlights its close connection to activation energy, achieving an RMSE value of 0.41 eV. To sum up, this work elucidates the possible thoughts of catalyst design with spillover effect and gives reference for the description screening towards the chemical reactions similar to hydrogen spillover.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] CO2 Hydrogenation to Methanol over In2O3: The Size Effect
    Wu, Linlin
    Zou, Rui
    Shen, Chenyang
    Liu, Chang-jun
    ENERGY & FUELS, 2023, 37 (23) : 18120 - 18127
  • [22] CO2 hydrogenation to methanol over Rh/In2O3 catalyst
    Wang, Jing
    Sun, Kaihang
    Jia, Xinyu
    Liu, Chang-jun
    CATALYSIS TODAY, 2021, 365 : 341 - 347
  • [23] Theoretical study of methanol synthesis from CO2 and CO hydrogenation on the surface of ZrO2 supported In2O3 catalyst
    Dou, Maobin
    Zhang, Minhua
    Chen, Yifei
    Yu, Yingzhe
    SURFACE SCIENCE, 2018, 672 : 7 - 12
  • [24] Efficient hydrogenation of CO2 to methanol over Pd/In2O3/SBA-15 catalysts
    Jiang, Haoxi
    Lin, Jing
    Wu, Xiaohui
    Wang, Wenyi
    Chen, Yifei
    Zhang, Minhua
    JOURNAL OF CO2 UTILIZATION, 2020, 36 : 33 - 39
  • [25] Optimal design of PdAu/In2O3 catalysts for CO2 hydrogenation
    Xu, Xingtang
    Li, Yanwei
    Sun, Guang
    Cao, Jianliang
    Wang, Yan
    Xu, Wenjuan
    AIP ADVANCES, 2024, 14 (10)
  • [26] Effects of oxygen vacancy formation energy and Pt doping on the CO2 hydrogenation activity of In2O3 catalysts
    Wei, Zhangqian
    Bao, Yuanjie
    Wang, Yuchen
    Li, Shenggang
    CATALYSIS SCIENCE & TECHNOLOGY, 2025, 15 (05) : 1538 - 1546
  • [27] Theoretical study of methanol synthesis from CO2 hydrogenation on the surface of NiO supported In2O3(110) catalyst
    NiO支撑In2O3
    Hu, Ting-Ping (tingpinghu@163.com), 1684, Science Press (49): : 1684 - 1692
  • [28] Theoretical study of the promotional effect of ZrO2 on In2O3 catalyzed methanol synthesis from CO2 hydrogenation
    Zhang, Minhua
    Dou, Maobin
    Yu, Yingzhe
    APPLIED SURFACE SCIENCE, 2018, 433 : 780 - 789
  • [29] Slurry Phase Hydrogenation of CO2 to Methanol Using Supported In2O3 Catalysts as Promising Approach for Chemical Energy Storage
    Schuhle, Patrick
    Reichenberger, Sven
    Marzun, Galina
    Albert, Jakob
    CHEMIE INGENIEUR TECHNIK, 2021, 93 (04) : 585 - 593
  • [30] Theoretical Study of Selective Hydrogenation of CO2 to Methanol over Pt4/In2O3 Model Catalyst
    Sun, Kaihang
    Rui, Ning
    Shen, Chenyang
    Liu, Chang-jun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (20): : 10926 - 10936