Discharging of Ramsdellite MnO2 Cathode in a Lithium-Ion Battery

被引:0
|
作者
Jee, Woongkyu [1 ]
Sokol, Alexey A. [1 ]
Xu, Cyril [1 ]
Camino, Bruno [1 ]
Zhang, Xingfan [1 ]
Woodley, Scott M. [1 ]
机构
[1] Univ London, Dept Chem, London WC1H 0AJ, England
基金
英国工程与自然科学研究理事会;
关键词
ELECTROLYTIC MANGANESE-DIOXIDE; ELECTROCHEMICAL PROPERTIES; THERMODYNAMIC PROPERTIES; STRUCTURE PREDICTION; ELECTRONIC-STRUCTURE; GENETIC ALGORITHM; VOLTAGE FADE; LI; GAMMA-MNO2; PROGRAM;
D O I
10.1021/acs.chemmater.4c01417
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report an application of our unbiased Monte Carlo approach to investigate thermodynamic and electrochemical properties of lithiated manganese oxide in the ramsdellite phase (R-MnO2) to uncover the mechanism of lithium intercalation and understand charging/discharging of R-MnO2 as a cathode material in lithium-ion batteries. The lithium intercalation reaction was computationally explored by modeling thermodynamically significant distributions of lithium and reduced manganese in the R-MnO2 framework for a realistic range of lithium molar fractions 0 < x < 1 in LixMnO2. We employed interatomic potentials and analyzed the thermodynamics of the resultant grand canonical ensemble. We found ordered or semiordered phases at x = 0.5 and 1.0 in LixMnO2, verified by configurational entropy changes and simulated X-ray diffraction patterns of partially lithiated R-MnO2. The radial distribution functions show the preference of lithium for homogeneous distributions across the one-dimensional 2 x 1 ramsdellite channels accompanied by alternating reduced/oxidized manganese ions. The occupation of the interstitial sites in the channels is correlated with the calculated voltage profile, showing a sharp voltage drop at x = 0.5, which is explained by the energy penalty of shifting lithium ions from stable tetrahedral to unstable octahedral sites. To facilitate this work, our in-house software, Knowledge Led Master Code (KLMC) was extended to support massive parallelism on high-performance computers.
引用
收藏
页码:8737 / 8752
页数:16
相关论文
共 50 条
  • [31] Nanoscale mapping of ion diffusion in a lithium-ion battery cathode
    N. Balke
    S. Jesse
    A. N. Morozovska
    E. Eliseev
    D. W. Chung
    Y. Kim
    L. Adamczyk
    R. E. García
    N. Dudney
    S. V. Kalinin
    Nature Nanotechnology, 2010, 5 : 749 - 754
  • [32] Nanoscale mapping of ion diffusion in a lithium-ion battery cathode
    Balke, N.
    Jesse, S.
    Morozovska, A. N.
    Eliseev, E.
    Chung, D. W.
    Kim, Y.
    Adamczyk, L.
    Garcia, R. E.
    Dudney, N.
    Kalinin, S. V.
    NATURE NANOTECHNOLOGY, 2010, 5 (10) : 749 - 754
  • [33] Rational optimization of substituted α-MnO2 cathode for aqueous zinc-ion battery
    Le, Thanh
    Takeuchi, Esther S.
    Takeuchi, Kenneth J.
    Marschilok, Amy C.
    Liu, Ping
    ENERGY STORAGE, 2024, 6 (04)
  • [34] Reaction Mechanisms and Improvement of α-MnO2 Cathode in Aqueous Zn-Ion Battery
    Hwang, Taesoon
    Bergschneider, Matthew
    Kong, Fantai
    Cho, Kyeongjae
    CHEMISTRY OF MATERIALS, 2025, 37 (03) : 1244 - 1254
  • [35] A Superior δ-MnO2 Cathode and a Self-Healing Zn-δ-MnO2 Battery
    Wang, Donghong
    Wang, Lufeng
    Liang, Guojin
    Li, Hongfei
    Liu, Zhuoxin
    Tang, Zijie
    Liang, Jianbo
    Zhi, Chunyi
    ACS NANO, 2019, 13 (09) : 10643 - 10652
  • [36] Electrochemical controllable synthesis of MnO2 as cathode of rechargeable Zinc-ion battery
    Fan, Xiaoyong
    Yang, Huan
    Ni, Kefan
    Han, Jiaxing
    Wu, Yan
    Sun, Ruibo
    Gou, Lei
    Li, Donglin
    FUNCTIONAL MATERIALS LETTERS, 2020, 13 (03)
  • [37] Mechanochemical reactions of MnO2 and graphite nanosheets as a durable zinc ion battery cathode
    Cao, Jin
    Zhang, Dongdong
    Zhang, Xinyu
    Wang, Shanmin
    Han, Jiantao
    Zhao, Yusheng
    Huang, Yunhui
    Qin, Jiaqian
    APPLIED SURFACE SCIENCE, 2020, 534
  • [38] Studies on a novel secondary battery: MH/MnO2 rechargeable battery. II Characteristics of the MnO2 cathode
    Xia, Xi
    Guo, Zaiping
    Journal of the Electrochemical Society, 1997, 144 (08):
  • [39] Recycling spent lithium-ion battery cathode: an overview
    Zhang, Xun
    Zhu, Maiyong
    GREEN CHEMISTRY, 2024, 26 (13) : 7656 - 7717
  • [40] Revisit of Polypyrrole as Cathode Material for Lithium-Ion Battery
    Qie, Long
    Yuan, Li-Xia
    Zhang, Wu-Xing
    Chen, Wei-Min
    Huang, Yun-Hui
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (10) : A1624 - A1629