Traffic Flow Prediction Based on Deep Spatio-Temporal Domain Adaptation

被引:0
|
作者
Wang, Zhihui [1 ,2 ]
Li, Bingxin [1 ,2 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai, Peoples R China
[2] Shanghai Key Lab Data Sci, Shanghai, Peoples R China
关键词
Spatio-Temporal Domain Adaptation; Traffic Flow Prediction; Deep Learning;
D O I
10.1007/978-3-031-68312-1_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate short-term traffic forecasting plays a key role in various intelligent mobility operations and management systems. Traffic flows have potential spatio-temporal correlations that cannot be identified by extracting the spatio-temporal patterns of traffic data separately. Furthermore, the problem of missing traffic data leads to the inability to train accurate models with sufficient data. Developing traffic prediction models with small training data is still a problem to be solved. In this paper, we study short-term traffic forecasting tasks and propose a method based on deep spatio-temporal domain adaptation. The experimental results show that our deep spatio-temporal domain adaptation model has better performance.
引用
收藏
页码:110 / 115
页数:6
相关论文
共 50 条
  • [31] Spatio-Temporal Parallel Transformer Based Model for Traffic Prediction
    Kumar, Rahul
    Mendes-moreira, Joao
    Chandra, Joydeep
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (09)
  • [32] Traffic station classification based on deep spatio-temporal network
    Hu, Zhiqiu
    Sun, Rencheng
    Shao, Fengjing
    Sui, Yi
    Lv, Zhihan
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 97
  • [33] A spatio-temporal sequence-to-sequence network for traffic flow prediction
    Cao, Shuqin
    Wu, Libing
    Wu, Jia
    Wu, Dan
    Li, Qingan
    INFORMATION SCIENCES, 2022, 610 : 185 - 203
  • [34] Improved Spatio-Temporal Residual Networks for Bus Traffic Flow Prediction
    Liu, Panbiao
    Zhang, Yong
    Kong, Dehui
    Yin, Baocai
    APPLIED SCIENCES-BASEL, 2019, 9 (04):
  • [35] STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow Prediction
    Bhaumik, Kishor Kumar
    Niloy, Fahim Faisal
    Mahmud, Saif
    Woo, Simon S.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT VI, PAKDD 2024, 2024, 14650 : 288 - 299
  • [36] Spatio-Temporal Self-Supervised Learning for Traffic Flow Prediction
    Ji, Jiahao
    Wang, Jingyuan
    Huang, Chao
    Wu, Junjie
    Xu, Boren
    Wu, Zhenhe
    Zhang, Junbo
    Zheng, Yu
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4356 - 4364
  • [37] Deep representation of imbalanced spatio-temporal traffic flow data for traffic accident detection
    Mehrannia, Pouya
    Bagi, Shayan Shirahmad Gale
    Moshiri, Behzad
    Al-Basir, Otman Adam
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (03) : 602 - 615
  • [38] Deep spatio-temporal 3D dilated dense neural network for traffic flow prediction
    He, Rui
    Zhang, Cuijuan
    Xiao, Yunpeng
    Lu, Xingyu
    Zhang, Song
    Liu, Yanbing
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [39] Deep Spatio-temporal Adaptive 3D Convolutional Neural Networks for Traffic Flow Prediction
    Li, He
    Li, Xuejiao
    Su, Liangcai
    Jin, Duo
    Huang, Jianbin
    Huang, Deshuang
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (02)
  • [40] Sequential Patterns for Spatio-Temporal Traffic Prediction
    Almuhisen, Feda
    Durand, Nicolas
    Brenner, Leonardo
    Quafafou, Mohamed
    2021 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT 2021), 2021, : 595 - 602