Achieving over 42 % indoor efficiency in wide-bandgap perovskite solar cells through optimized interfacial passivation and carrier transport

被引:18
|
作者
Shi, Zhong-En [1 ,2 ]
Cheng, Ta-Hung [3 ]
Lung, Chien-Yu [1 ,2 ]
Lin, Chi-Wei [1 ,2 ]
Wang, Chih-Lin [1 ,2 ]
Jiang, Bing-Huang [1 ,2 ]
Hsiao, Yu-Sheng [3 ]
Chen, Chih-Ping [1 ,2 ,4 ,5 ]
机构
[1] Ming Chi Univ Technol, Dept Mat Engn, New Taipei City 24301, Taiwan
[2] Ming Chi Univ Technol, Organ Elect Res Ctr, New Taipei City 24301, Taiwan
[3] Natl Taiwan Univ Sci & Technol, Dept Mat Sci & Engn, Taipei 10607, Taiwan
[4] Chang Gung Univ, Coll Engn, Taoyuan City 33302, Taiwan
[5] Chang Gung Univ, Ctr Sustainabil & Energy Technol, Taoyuan City 33302, Taiwan
关键词
Solar cell; Perovsktie; Self-assembled layer; Indoor harvesting;
D O I
10.1016/j.cej.2024.155512
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Leveraging their tunable bandgap and low-cost fabrication, mixed-halide perovskite solar cells (PSCs) are highly attractive for indoor light-harvesting applications. However, achieving efficient carrier transport and defect passivation at the critical nickel oxide (NiOx)/perovskite x )/perovskite interface, particularly under low light conditions, remains a challenge. Self-assembled monolayers (SAMs) offer a promising solution by introducing a tailored interface that promotes perovskite growth, suppresses non-radiative recombination, and facilitates efficient carrier transport. This study explores the effect of self-assembled monolayers (SAMs), readily deposited via spin- coating, on defect passivation in sol-gel NiOx x for PSCs. Four SAMs with varying linker lengths (2C- and 4C- aliphatic chains) and terminal functional groups (R=H, methoxy, benzo (C4H4-) methyl) were examined: 2PACz, MeO-2PACz, 4PADCB, and Me-4PACz. The results demonstrate that NiOx x films modified with MeO2PACz and 4PADCB are particularly effective in mitigating interface defects. Notably, PSCs incorporating these SAM-modified NiOx x layers and employing a wide-bandgap perovskite (Cs(0.18)FA(0.82)Pb(I0.8Br0.2)(3)) achieved impressive performance exceeding 20 % under simulated sunlight (AM 1.5 G 100 mW cm(-2) ) and a remarkable 42% PCE under indoor lighting condition (3000K LED (1000 lx)). This finding highlights the significant potential of PSCs for efficient electricity generation in low-light environments, potentially paving the way for their widespread application in such settings.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Homogeneous Grain Boundary Passivation in Wide-Bandgap Perovskite Films Enables Fabrication of Monolithic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency
    Xie, Yue-Min
    Yao, Qin
    Zeng, Zixin
    Xue, Qifan
    Niu, Tianqi
    Xia, Ruoxi
    Cheng, Yuanhang
    Lin, Francis
    Tsang, Sai-Wing
    Jen, Alex K-Y
    Yip, Hin-Lap
    Cao, Yong
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (19)
  • [12] Enhancing Charge Transport of 2D Perovskite Passivation Agent for Wide-Bandgap Perovskite Solar Cells Beyond 21%
    Ye, Jiselle Y.
    Tong, Jinhui
    Hu, Jun
    Xiao, Chuanxiao
    Lu, Haipeng
    Dunfield, Sean P.
    Kim, Dong Hoe
    Chen, Xihan
    Larson, Bryon W.
    Hao, Ji
    Wang, Kang
    Zhao, Qian
    Chen, Zheng
    Hu, Huamin
    You, Wei
    Berry, Joseph J.
    Zhang, Fei
    Zhu, Kai
    SOLAR RRL, 2020, 4 (06)
  • [13] Defect passivation engineering for achieving 4.29% light utilization efficiency MA-free wide-bandgap semi-transparent perovskite solar cells
    Shi, Hongxi
    Xie, Tianye
    Li, Denggao
    Li, Ziyu
    Chen, Zhijia
    Wang, Chenyu
    Huang, Shihua
    Lu, Zhangbo
    Zheng, Fan
    Chi, Dan
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [14] Recent Advances in Wide-Bandgap Perovskite Solar Cells
    Mei, Jianjun
    Yan, Feng
    ADVANCED MATERIALS, 2025,
  • [15] Interfacial Engineering of Wide-Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells
    Wang, Deng
    Guo, Hongling
    Wu, Xin
    Deng, Xiang
    Li, Fengzhu
    Li, Zhen
    Lin, Francis
    Zhu, Zonglong
    Zhang, Yi
    Xu, Baomin
    Jen, Alex K. Y.
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (02)
  • [16] Simultaneous Interfacial Modification and Defect Passivation for Wide-Bandgap Semitransparent Perovskite Solar Cells with 14.4% Power Conversion Efficiency and 38% Average Visible Transmittance
    Shi, Hongxi
    Zhang, Lei
    Huang, Hao
    Wang, Xiaoting
    Li, Ziyu
    Xuan, Dazhi
    Wang, Chenyu
    Ou, Yali
    Ni, Chaojie
    Li, Denggao
    Chi, Dan
    Huang, Shihua
    SMALL, 2022, 18 (31)
  • [17] Wide-bandgap, low-bandgap, and tandem perovskite solar cells
    Song, Zhaoning
    Chen, Cong
    Li, Chongwen
    Awni, Rasha A.
    Zhao, Dewei
    Yan, Yanfa
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (09)
  • [18] All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites
    Liu, Zhou
    Lin, Renxing
    Wei, Mingyang
    Yin, Mengran
    Wu, Pu
    Li, Manya
    Li, Ludong
    Wang, Yurui
    Chen, Gang
    Carnevali, Virginia
    Agosta, Lorenzo
    Slama, Vladislav
    Lempesis, Nikolaos
    Wang, Zhichao
    Wang, Meiyu
    Deng, Yu
    Luo, Haowen
    Gao, Han
    Rothlisberger, Ursula
    Zakeeruddin, Shaik M.
    Luo, Xin
    Liu, Ye
    Graetzel, Michael
    Tan, Hairen
    NATURE MATERIALS, 2025, 24 (02) : 252 - 259
  • [19] Compositional and interfacial engineering for improved light stability of flexible wide-bandgap perovskite solar cells
    Wasiak-Maciejak, Anna
    Przypis, Lukasz
    Zuraw, Wiktor
    Rycek, Kinga
    Janicka, Patrycja
    Scigaj, Mateusz
    Dyk, Konrad
    Lai, Huagui
    Piejko, Adrianna
    Pucicki, Damian
    Fu, Fan
    Kinzhybalo, Vasyl
    Wojciechowski, Konrad
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (10) : 7335 - 7346
  • [20] Wide-Bandgap Perovskite/Gallium Arsenide Tandem Solar Cells
    Li, Zijia
    Kim, Tae Hak
    Han, Sung Yong
    Yun, Yeo-Jun
    Jeong, Seonghwa
    Jo, Bonghyun
    Ok, Song Ah
    Yim, Woongbin
    Lee, Seung Hu
    Kim, Kangho
    Moon, Sunghyun
    Park, Ji-Yong
    Ahn, Tae Kyu
    Shin, Hyunjung
    Lee, Jaejin
    Park, Hui Joon
    ADVANCED ENERGY MATERIALS, 2020, 10 (06)