Electroactive biofilm communities in microbial fuel cells for the synergistic treatment of wastewater and bioelectricity generation

被引:2
|
作者
Mahto, Kumari Uma [1 ]
Das, Surajit [1 ]
机构
[1] Natl Inst Technol, Dept Life Sci, Lab Environm Microbiol & Ecol LEnME, Rourkela, Odisha, India
关键词
Microbial Fuel Cell; electroactive biofilm; wastewater; bioelectricity; bioelectrochemical; POWER-GENERATION; ELECTRICITY-GENERATION; CARBON CLOTH; GEOBACTER-SULFURREDUCENS; ELECTROCHEMICAL SYSTEMS; INTERNAL RESISTANCE; NITROGEN REMOVAL; ANODIC BIOFILM; CABLE BACTERIA; PERFORMANCE;
D O I
10.1080/07388551.2024.2372070
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Increasing industrialization and urbanization have contributed to a significant rise in wastewater discharge and exerted extensive pressure on the existing natural energy resources. Microbial fuel cell (MFC) is a sustainable technology that utilizes wastewater for electricity generation. MFC comprises a bioelectrochemical system employing electroactive biofilms of several aerobic and anaerobic bacteria, such as Geobacter sulfurreducens, Shewanella oneidensis, Pseudomonas aeruginosa, and Ochrobacterum pseudiintermedium. Since the electroactive biofilms constitute a vital part of the MFC, it is crucial to understand the biofilm-mediated pollutant metabolism and electron transfer mechanisms. Engineering electroactive biofilm communities for improved biofilm formation and extracellular polymeric substances (EPS) secretion can positively impact the bioelectrochemical system and improve fuel cell performance. This review article summarizes the role of electroactive bacterial communities in MFC for wastewater treatment and bioelectricity generation. A significant focus has been laid on understanding the composition, structure, and function of electroactive biofilms in MFC. Various electron transport mechanisms, including direct electron transfer (DET), indirect electron transfer (IET), and long-distance electron transfer (LDET), have been discussed. A detailed summary of the optimization of process parameters and genetic engineering strategies for improving the performance of MFC has been provided. Lastly, the applications of MFC for wastewater treatment, bioelectricity generation, and biosensor development have been reviewed.
引用
收藏
页码:434 / 453
页数:20
相关论文
共 50 条
  • [41] Photoelectrocatalytic fuel cells and photoelectrode microbial fuel cells for wastewater treatment and power generation
    Antolini, Ermete
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2019, 7 (04):
  • [42] Constructed Wetland Coupled Microbial Fuel Cell: A Clean Technology for Sustainable Treatment of Wastewater and Bioelectricity Generation
    Kesarwani, Shiwangi
    Panwar, Diksha
    Mal, Joyabrata
    Pradhan, Nirakar
    Rani, Radha
    FERMENTATION-BASEL, 2023, 9 (01):
  • [43] Bioelectricity generation from sewage and wastewater treatment using two-chambered microbial fuel cell
    Bose, Debajyoti
    Dhawan, Himanshi
    Kandpal, Vaibhaw
    Vijay, Parthasarthy
    Gopinath, Margavelu
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (14) : 4335 - 4344
  • [44] Effect of carbon materials as cathode on wastewater treatment and bioelectricity generation in a double chambered microbial fuel cell
    Yap, Kea-Lee
    Ho, Li-Ngee
    Ong, Soon-An
    Guo, Kun
    3RD INTERNATIONAL CONFERENCE ON CIVIL AND ENVIRONMENTAL ENGINEERING, 2021, 646
  • [45] Nanocoating of microbial fuel cell electrodes for enhancing bioelectricity generation from wastewater
    Attia, Yasser A.
    Samer, Mohamed
    Mohamed, Mahmoud S. M.
    Moustafa, Elshaimaa
    Salah, Mohamed
    Abdelsalam, Essam M.
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (01) : 847 - 858
  • [46] Solar-assisted microbial fuel cells for bioelectricity and chemical fuel generation
    Wang, Hanyu
    Qian, Fang
    Li, Yat
    NANO ENERGY, 2014, 8 : 264 - 273
  • [47] Bioelectricity generation and biofilm analysis from sewage sources using microbial fuel cell
    Bose, Debajyoti
    Gopinath, Margavelu
    Vijay, Parthasarthy
    Sridharan, Shanmathi
    Rawat, Ritika
    Bahuguna, Robin
    FUEL, 2019, 255
  • [48] Identifying the microbial communities and operational conditions for optimized wastewater treatment in microbial fuel cells
    Ishii, Shun'ichi
    Suzuki, Shino
    Norden-Krichmar, Trina M.
    Wu, Angela
    Yamanaka, Yuko
    Nealson, Kenneth H.
    Bretschger, Orianna
    WATER RESEARCH, 2013, 47 (19) : 7120 - 7130
  • [49] The efficient treatment of breeding wastewater by an electroactive microbial community in microbial fuel cell
    Wang, Huimin
    Qi, Xiaoyan
    Chen, Siyu
    Wang, Xia
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (02):
  • [50] Enhanced power generation in microbial fuel cell by an agonist of electroactive biofilm - Sulfamethoxazole
    Wu, Dan
    Sun, Faqian
    Chua, Feng Jun Desmond
    Zhou, Yan
    CHEMICAL ENGINEERING JOURNAL, 2020, 384 (384)