Generalization of conformal Hamada operators

被引:0
|
作者
Rachwal, Leslaw [1 ]
do Vale, Publio Rwany B. R. [1 ]
机构
[1] Univ Fed Juiz De Fora, Dept Fis, Inst Ciencias Exatas, BR-33036900 Juiz De Fora, MG, Brazil
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 09期
关键词
IN-FIELD THEORY; INVARIANT POWERS; QUANTUM-GRAVITY; DIFFERENTIAL-OPERATORS; RENORMALIZATION-GROUP; QUANTIZED MATTER; TRACE ANOMALIES; CURVED SPACE; C-THEOREM; WEYL;
D O I
10.1140/epjc/s10052-024-13168-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The six-derivative conformal scalar operator was originally found by Hamada in its critical dimension of spacetime, d=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=6$$\end{document}. We generalize this construction to arbitrary dimensions d by adding new terms cubic in gravitational curvatures and by changing its coefficients of expansion in various curvature terms. The consequences of global scale-invariance and of infinitesimal local conformal transformations are derived for the form of this generalized operator. The system of linear equations for coefficients is solved giving explicitly the conformal Hamada operator in any d. Some singularities in construction for dimensions d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and d=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=4$$\end{document} are noticed. We also prove a general theorem that a scalar conformal operator with n derivatives in d=n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=n-2$$\end{document} dimensions is impossible to construct. Finally, we compare our explicit construction with the one that uses conformal covariant derivatives and conformal curvature tensors. We present new results for operators built with different orders of conformal covariant derivatives.
引用
收藏
页数:48
相关论文
共 50 条
  • [21] Linear dilaton conformal field theory: a generalization
    Kamani, D.
    INDIAN JOURNAL OF PHYSICS, 2011, 85 (10) : 1535 - 1549
  • [22] Clifford lattices and a conformal generalization of Desargues' theorem
    King, A. D.
    Schief, W. K.
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (05) : 1088 - 1096
  • [23] Higher-derivative generalization of conformal mechanics
    Baranovsky, Oleg
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (08)
  • [24] Linear dilaton conformal field theory: a generalization
    D. Kamani
    Indian Journal of Physics, 2011, 85 : 1535 - 1549
  • [25] O-operators and Nijenhuis operators of associative conformal algebras
    Yuan, Lamei
    JOURNAL OF ALGEBRA, 2022, 609 : 245 - 291
  • [26] The rate of convergence of a generalization of Post–Widder operators and Rathore operators
    Ulrich Abel
    Vijay Gupta
    Advances in Operator Theory, 2023, 8
  • [27] On Casimir operators of conformal Galilei algebras
    Alshammari, Fahad
    Isaac, Phillip S.
    Marquette, Ian
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (01)
  • [28] Bootstrapping conformal defect operators on a line
    Dey, Parijat
    Ghosh, Kausik
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (10):
  • [29] Quasiparticles operators in conformal field theories
    Cabra, DC
    TRENDS IN THEORETICAL PHYSICS - CERN-SANTIAGO DE COMPOSTELA-LA PLATA MEETING, 1998, (419): : 432 - 435
  • [30] Weight shifting operators and conformal blocks
    Denis Karateev
    Petr Kravchuk
    David Simmons-Duffin
    Journal of High Energy Physics, 2018