An improve nonlinear robust control approach for robotic manipulators with PSO-based global optimization strategy

被引:0
|
作者
Yue, Peihao [1 ,3 ]
Xu, Bowen [2 ]
Zhang, Min [3 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
[2] Natl Univ Def Technol, Hyperson Technol Lab, Changsha 410073, Peoples R China
[3] Hunan Acad Forestry, Changsha 410012, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Robotic manipulator; Nonlinear dynamics; Active disturbance rejection controller; Nonlinear control; Particle swarm optimization; DISTURBANCE REJECTION CONTROL; MOTION CONTROL; TRAJECTORY TRACKING; ADAPTIVE-CONTROL; CONTROL DESIGN; PID CONTROL; SYSTEM;
D O I
10.1038/s41598-024-72156-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
During the trajectory tracking of robotic manipulators, many factors including dead zones, saturation, and uncertain dynamics, greatly increase the modeling and control difficulty. Aiming for this issue, a nonlinear active disturbance rejection control (NADRC)-based control strategy is proposed for robotic manipulators. In this controller, an extended state observer is introduced on basis of the dynamic model, to observe the extend state of model uncertainties and external disturbances. Then, in combination with the nonlinear feedback control structure, the robust trajectory tracking of robotic manipulators is achieved. Furthermore, to optimize the key parameters of the controller, an improved particle swarm optimization algorithm (IPSO) is designed using chaos theory, which improves the tracking accuracy of the proposed NDRC strategy effectively. Finally, using comparative studies, the effectiveness of the proposed control strategy is demonstrated by comparing with several commonly used controllers.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Robust finite-time control approach for robotic manipulators
    Zhao, D.
    Li, S.
    Zhu, Q.
    Gao, F.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (01): : 1 - 15
  • [22] ROBUST NEURAL NETWORK CONTROL OF ROBOTIC MANIPULATORS VIA SWITCHING STRATEGY
    Yu, Lei
    Fei, Shumin
    Huang, Jun
    Li, Yongmin
    Yang, Gang
    Sun, Lining
    [J]. KYBERNETIKA, 2015, 51 (02) : 309 - 320
  • [23] Memory enhanced PSO-based optimization approach for smart antennas control in complex interference scenarios
    Benedetti, Manuel
    Azaro, Renzo
    Massa, Andrea
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (07) : 1939 - 1947
  • [24] ROBUST CONTROL FOR RIGID ROBOTIC MANIPULATORS USING NONLINEAR DISTURBANCE OBSERVER
    Chen, Mou
    Jiang, Bin
    Cui, Rong-Xin
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2014, 29 (03): : 305 - 311
  • [25] PSO-based nonlinear model predictive planning and discrete-time sliding tracking control for uncertain planar underactuated manipulators
    Zhang, Pan
    Lai, Xuzhi
    Wang, Yawu
    Su, Chun-Yi
    Wu, Min
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (10) : 2075 - 2089
  • [26] A three-stage PSO-based methodology for tuning an optimal PD-controller for robotic arm manipulators
    Tarek A. Tutunji
    Mustafa Al-Khawaldeh
    Malek Alkayyali
    [J]. Evolutionary Intelligence, 2022, 15 : 381 - 396
  • [27] A three-stage PSO-based methodology for tuning an optimal PD-controller for robotic arm manipulators
    Tutunji, Tarek A.
    Al-Khawaldeh, Mustafa
    Alkayyali, Malek
    [J]. EVOLUTIONARY INTELLIGENCE, 2022, 15 (01) : 381 - 396
  • [28] Robust control of robotic manipulators based on integral sliding mode
    Shi, J.
    Liu, H.
    Bajcinca, N.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2008, 81 (10) : 1537 - 1548
  • [29] PSO-Based Voltage Control Strategy for Loadability Enhancement in Smart Power Grids
    Su, Heng-Yi
    Hsu, Yu-Liang
    Chen, Yi-Chung
    [J]. APPLIED SCIENCES-BASEL, 2016, 6 (12):
  • [30] Robust output tracking control for nonlinear time-varying robotic manipulators
    Y. J. Huang
    T. C. Kuo
    [J]. Electrical Engineering, 2005, 87 : 47 - 55