Novel dicyanomethylene-functionalized s-indacene-tetraone-based materials as non-fullerene acceptors for ternary organic solar cells

被引:0
|
作者
Grzibovskis, Raitis [1 ]
Aizstrauts, Arturs [1 ]
Ruduss, Armands [2 ]
Traskovskis, Kaspars [2 ]
机构
[1] Univ Latvia, Inst Solid State Phys, Riga, Latvia
[2] Riga Tech Univ, Inst Chem & Chem Technol, Fac Nat Sci & Technol, Riga, Latvia
关键词
Ternary organic solar cells; organic photovoltaics; photoemission yield spectroscopy; photoconductivity; non-fullerene acceptors; s-indacene-tetraone-based materials; external quantum efficiency;
D O I
10.1117/12.3017581
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Organic materials are actively researched for their potential application in the manufacturing of solar cells. The possibility to vary the structure of the molecules and the possibility of using wet casting methods such as spin-coating or inkjet printing are the main advantages of these materials. In recent years the research has shifted away from fullerenes as electron acceptor materials due to their disadvantages. Additionally, the introduction of a third component in the active layer of organic solar cells allows the expansion of the absorption spectrum of the cell thus increasing the solar cell efficiency compared to the two-component bulk heterojunctions. The manufacturing of ternary organic solar cells (TOSC) is easier than tandem cells, thus reducing the potential costs upon their commercialization. In this work, we have studied the application of novel dicyanomethylene-functionalized s-indacene-tetraone based non-fullerene acceptors IC-1 and IC-2 as the third component in TOSCs. The chromophores IC-1 and IC-2 with donor-acceptor-donor (D-A-D) molecular composition were acquired by condensation reactions between s-indacene-tetraone derivative acceptor fragment and aniline- or indoline-based electron-donating fragments. Electron donor polymer PM6 and electron acceptor material Y7 were used as the base materials for the TOSCs. The energy levels of IC-1 and IC-2 are located between the levels of PM6 and Y7 creating the cascade effect. IC-2 absorption has an additional shoulder between 650 nm and 800 nm which helps to increase the power conversion efficiency and reduce the losses shown by the external quantum efficiency (EQE) measurements.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] 18.7% Efficiency Ternary Organic Solar Cells Using Two Non-Fullerene Acceptors with Excellent Compatibility
    Huang, Tianhuan
    Zhang, Zheling
    Wang, Dongjie
    Zhang, Yang
    Deng, Zhengqi
    Huang, Yu
    Liao, Qiaogan
    Zhang, Jian
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (05) : 3126 - 3134
  • [32] A History and Perspective of Non-Fullerene Electron Acceptors for Organic Solar Cells
    Armin, Ardalan
    Li, Wei
    Sandberg, Oskar J.
    Xiao, Zuo
    Ding, Liming
    Nelson, Jenny
    Neher, Dieter
    Vandewal, Koen
    Shoaee, Safa
    Wang, Tao
    Ade, Harald
    Heumueller, Thomas
    Brabec, Christoph
    Meredith, Paul
    ADVANCED ENERGY MATERIALS, 2021, 11 (15)
  • [33] Energy Level Tuning of Non-Fullerene Acceptors in Organic Solar Cells
    Cnops, Kjell
    Zango, German
    Genoe, Jan
    Heremans, Paul
    Martinez-Diaz, M. Victoria
    Torres, Tomas
    Cheyns, David
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (28) : 8991 - 8997
  • [34] Miscibility-Driven Optimization of Nanostructures in Ternary Organic Solar Cells Using Non-fullerene Acceptors
    Naveed, Hafiz Bilal
    Ma, Wei
    JOULE, 2018, 2 (04) : 621 - 641
  • [35] Indacenodithiophene (IDT) and indacenodithienothiophene (IDTT)-based acceptors for non-fullerene organic solar cells
    Khlaifia, Dalila
    Ettaghzouti, Thouraya
    Chemek, Mourad
    Alimi, Kamel
    SYNTHETIC METALS, 2021, 274
  • [36] Highly Efficient Organic Solar Cells Based on S,N-Heteroacene Non-Fullerene Acceptors
    Huang, Chuyi
    Liao, Xunfan
    Gao, Ke
    Zuo, Lijian
    Lin, Francis
    Shi, Xueliang
    Li, Chang-Zhi
    Liu, Hongbin
    Li, Xiaosong
    Liu, Feng
    Chen, Yiwang
    Chen, Hongzheng
    Jen, Alex K-Y.
    CHEMISTRY OF MATERIALS, 2018, 30 (15) : 5429 - 5434
  • [37] Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells
    Zhan, Lingling
    Li, Shuixing
    Zhang, Shuhua
    Chen, Xingzhi
    Lau, Tsz-Ki
    Lu, Xinhui
    Shi, Minmin
    Li, Chang-Zhi
    Chen, Hongzheng
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (49) : 42444 - 42452
  • [38] Benzonitrile-functionalized non-fullerene acceptors for organic solar cells with low non-radiative loss
    Sun, Cheng-Zhe
    Lai, Xue
    Rehman, Tahir
    Lai, Hanjian
    Ke, Chunxian
    Shen, Xiangyu
    Zhu, Yulin
    Tian, Leilei
    He, Feng
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (45) : 17174 - 17181
  • [39] Strategies for High Current Densities in Non-Fullerene Acceptors based Organic Solar Cells
    Song, Xin
    Troughton, Joel
    Gasparini, Nicola
    Baran, Derya
    ORGANIC ELECTRONICS AND PHOTONICS: FUNDAMENTALS AND DEVICES, 2018, 10687
  • [40] Dithienonaphthalene-Based Non-fullerene Acceptors With Different Bandgaps for Organic Solar Cells
    Zhang, Meiqi
    Ma, Yunlong
    Zheng, Qingdong
    FRONTIERS IN CHEMISTRY, 2018, 6