Novel dicyanomethylene-functionalized s-indacene-tetraone-based materials as non-fullerene acceptors for ternary organic solar cells

被引:0
|
作者
Grzibovskis, Raitis [1 ]
Aizstrauts, Arturs [1 ]
Ruduss, Armands [2 ]
Traskovskis, Kaspars [2 ]
机构
[1] Univ Latvia, Inst Solid State Phys, Riga, Latvia
[2] Riga Tech Univ, Inst Chem & Chem Technol, Fac Nat Sci & Technol, Riga, Latvia
关键词
Ternary organic solar cells; organic photovoltaics; photoemission yield spectroscopy; photoconductivity; non-fullerene acceptors; s-indacene-tetraone-based materials; external quantum efficiency;
D O I
10.1117/12.3017581
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Organic materials are actively researched for their potential application in the manufacturing of solar cells. The possibility to vary the structure of the molecules and the possibility of using wet casting methods such as spin-coating or inkjet printing are the main advantages of these materials. In recent years the research has shifted away from fullerenes as electron acceptor materials due to their disadvantages. Additionally, the introduction of a third component in the active layer of organic solar cells allows the expansion of the absorption spectrum of the cell thus increasing the solar cell efficiency compared to the two-component bulk heterojunctions. The manufacturing of ternary organic solar cells (TOSC) is easier than tandem cells, thus reducing the potential costs upon their commercialization. In this work, we have studied the application of novel dicyanomethylene-functionalized s-indacene-tetraone based non-fullerene acceptors IC-1 and IC-2 as the third component in TOSCs. The chromophores IC-1 and IC-2 with donor-acceptor-donor (D-A-D) molecular composition were acquired by condensation reactions between s-indacene-tetraone derivative acceptor fragment and aniline- or indoline-based electron-donating fragments. Electron donor polymer PM6 and electron acceptor material Y7 were used as the base materials for the TOSCs. The energy levels of IC-1 and IC-2 are located between the levels of PM6 and Y7 creating the cascade effect. IC-2 absorption has an additional shoulder between 650 nm and 800 nm which helps to increase the power conversion efficiency and reduce the losses shown by the external quantum efficiency (EQE) measurements.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Ternary organic solar cells based on non-fullerene acceptors: A review
    Chang, Lichun
    Sheng, Ming
    Duan, Leiping
    Uddin, Ashraf
    ORGANIC ELECTRONICS, 2021, 90
  • [2] High-Efficiency Ternary Organic Solar Cells Enabled by Synergizing Dicyanomethylene-Functionalized Coumarin Donors and Fullerene- Free Acceptors
    Pradhan, Rashmirekha
    Agrawal, Anupam
    Bag, Bhawani Prasad
    Singhal, Rahul
    Mishra, Amaresh
    Sharma, Ganesh D.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (07) : 9020 - 9030
  • [3] Organic solar cells based on non-fullerene acceptors
    Hou, Jianhui
    Inganas, Olle
    Friend, Richard H.
    Gao, Feng
    NATURE MATERIALS, 2018, 17 (02) : 119 - 128
  • [4] Organic solar cells based on non-fullerene acceptors
    Jianhui Hou
    Olle Inganäs
    Richard H. Friend
    Feng Gao
    Nature Materials, 2018, 17 (2) : 119 - 128
  • [5] Functionality of Non-Fullerene Electron Acceptors in Ternary Organic Solar Cells
    Zhu, Tao
    Zheng, Luyao
    Xiao, Zuo
    Meng, Xianyi
    Liu, Lei
    Ding, Liming
    Gong, Xiong
    SOLAR RRL, 2019, 3 (12)
  • [6] Dual non-fullerene acceptors based high efficiency ternary organic solar cells
    Zhou Peng-Chao
    Zhang Wei-Dong
    Gu Jia-Lu
    Chen Hui-Min
    Hu Teng-Da
    Pu Hua-Yan
    Lan Wei-Xia
    Wei Bin
    ACTA PHYSICA SINICA, 2020, 69 (19)
  • [7] Non-Fullerene Acceptors for Organic Solar Cells
    Trukhanov, V. A.
    Paraschuk, D. Yu.
    POLYMER SCIENCE SERIES C, 2014, 56 (01) : 72 - 83
  • [8] Non-fullerene acceptors for organic solar cells
    V. A. Trukhanov
    D. Yu. Paraschuk
    Polymer Science Series C, 2014, 56 : 72 - 83
  • [9] Non-fullerene acceptors for organic solar cells
    Cenqi Yan
    Stephen Barlow
    Zhaohui Wang
    He Yan
    Alex K.-Y. Jen
    Seth R. Marder
    Xiaowei Zhan
    Nature Reviews Materials, 3
  • [10] Non-fullerene acceptors for organic solar cells
    Yan, Cenqi
    Barlow, Stephen
    Wang, Zhaohui
    Yan, He
    Jen, Alex K. -Y.
    Marder, Seth R.
    Zhan, Xiaowei
    NATURE REVIEWS MATERIALS, 2018, 3 (03):