Data-driven guidelines for phylogenomic analyses using SNP data

被引:0
|
作者
Suissa, Jacob S. [1 ]
de la Cerda, Gisel Y. [2 ]
Graber, Leland C. [3 ]
Jelley, Chloe [3 ]
Wickell, David [2 ,4 ]
Phillips, Heather R. [2 ]
Grinage, Ayress D. [2 ,5 ]
Moreau, Corrie S. [3 ,5 ]
Specht, Chelsea D. [2 ]
Doyle, Jeff J. [2 ]
Landis, Jacob B. [2 ,6 ]
机构
[1] Univ Tennessee Knoxville, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA
[2] Cornell Univ, Sch Integrat Plant Sci, Sect Plant Biol & L H Bailey Hortorium, Ithaca, NY USA
[3] Cornell Univ, Dept Entomol, Ithaca, NY 14853 USA
[4] Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA
[5] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY USA
[6] Boyce Thompson Inst Plant Res, BTI Computat Biol Ctr, Ithaca, NY USA
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
ancestral state reconstructions; divergence time estimation; genotyping-by-sequencing (GBS); Glycine; locus; phylogenetic comparative methods; single-nucleotide polymorphism (SNP) filtering; MISSING DATA; GLYCINE; TREE; IMPACT; LIKELIHOOD; EVOLUTION; SEQUENCE; TAXA; BIAS;
D O I
10.1002/aps3.11611
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Premise: There is a general lack of consensus on the best practices for filtering of single-nucleotide polymorphisms (SNPs) and whether it is better to use SNPs or include flanking regions (full "locus") in phylogenomic analyses and subsequent comparative methods. Methods: Using genotyping-by-sequencing data from 22 Glycine species, we assessed the effects of SNP vs. locus usage and SNP retention stringency. We compared branch length, node support, and divergence time estimation across 16 datasets with varying amounts of missing data and total size. Results: Our results revealed five aspects of phylogenomic data usage that may be generally applicable: (1) tree topology is largely congruent across analyses; (2) filtering strictly for SNP retention (e.g., 90-100%) reduces support and can alter some inferred relationships; (3) absolute branch lengths vary by two orders of magnitude between SNP and locus datasets; (4) data type and branch length variation have little effect on divergence time estimation; and (5) phylograms alter the estimation of ancestral states and rates of morphological evolution. Discussion: Using SNP or locus datasets does not alter phylogenetic inference significantly, unless researchers want or need to use absolute branch lengths. We recommend against using excessive filtering thresholds for SNP retention to reduce the risk of producing inconsistent topologies and generating low support.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Data-Driven Threat Hunting Using Sysmon
    Mavroeidis, Vasileios
    Josang, Audun
    ICCSP 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, SECURITY AND PRIVACY, 2018, : 82 - 88
  • [32] Data-driven theory refinement using KBDistAl
    Yang, JH
    Parekh, R
    Honavar, V
    Dobbs, D
    ADVANCES IN INTELLIGENT DATA ANALYSIS, PROCEEDINGS, 1999, 1642 : 331 - 342
  • [33] Data-Driven Multithreading using conventional microprocessors
    Kyriacou, Costas
    Evripidou, Paraskevas
    Trancoso, Pedro
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2006, 17 (10) : 1176 - 1188
  • [34] Data-Driven Productivity
    Cannell, Thom
    MANUFACTURING ENGINEERING, 2023, 170 (04): : 72 - 78
  • [35] DATA-DRIVEN ORIGINALISM
    Lee, Thomas R.
    Phillips, James C.
    UNIVERSITY OF PENNSYLVANIA LAW REVIEW, 2019, 167 (02) : 261 - 335
  • [36] Data-driven geography
    Miller, Harvey J.
    Goodchild, Michael F.
    GEOJOURNAL, 2015, 80 (04) : 449 - 461
  • [37] Data-Driven Computing
    Kirchdoerfer, Trenton
    Ortiz, Michael
    ADVANCES IN COMPUTATIONAL PLASTICITY: A BOOK IN HONOUR OF D. ROGER J. OWEN, 2018, 46 : 165 - 183
  • [38] Data-Driven Healthcare
    Chang, Hyejung
    HEALTHCARE INFORMATICS RESEARCH, 2015, 21 (01) : 61 - 62
  • [39] Data-driven classification using boundary observations
    Zobel, Christopher W.
    Cook, Deborah F.
    Ragsdale, Cliff T.
    DECISION SCIENCES, 2006, 37 (02) : 247 - 262
  • [40] Data-driven deconvolution
    Hesse, CH
    JOURNAL OF NONPARAMETRIC STATISTICS, 1999, 10 (04) : 343 - 373