Harnessing explainable Artificial Intelligence (XAI) for enhanced geopolymer concrete mix optimization

被引:0
|
作者
Revathi, Bh [1 ]
Gobinath, R. [1 ]
Bala, G. Sri [2 ,3 ]
Nagaraju, T. Vamsi [2 ,3 ]
Bonthu, Sridevi [4 ]
机构
[1] SR Univ, Dept Civil Engn, Warangal, India
[2] SRKR Engn Coll, Dept Civil Engn, Bhimavaram, India
[3] SRKR Engn Coll, Ctr Clean & Sustainable Environm, Bhimavaram, India
[4] Vishnu Inst Technol, Dept Comp Sci Engn, Bhimavaram, India
关键词
Geopolymer; SHAP analysis; Sustainable concrete; Machine learning; STRENGTH; MICROSTRUCTURE; MECHANISMS; WASTE; RATIO;
D O I
10.1016/j.rineng.2024.103036
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Geopolymer concrete (GC) emerges as a sustainable alternative yet faces challenges in achieving optimal resource utilization for strength development. Balancing these aspects is crucial for its large-scale adoption as a sustainable material. The type and dosage of precursors, activator, curing, and mixing conditions influence compressive strength, setting time, and workability. Moreover, multiple experimental trials are required for a desirable geopolymer blend. Even the experimental parameters alone do not meet the design principles concerning sustainable construction. This paper presents a study on the mix design and interpretation of machine learning techniques (MLT) with XAI. To train the model, extensive experimental databases using the shapley additive explanations (SHAP) technique rank input factors that impact the strength aspect. The prediction models' performance was compared using coefficient of determination (R2) and root mean square error (RMSE). SHAP interpretations reveal that temperature, Na to Al ratio, and NaOH molarity are the main factors influencing the compressive strength of GC. Further, these parameters were crucial in developing the dense geopolymer matrix. By integrating XAI into the MLT approach, we have also opened new criteria for understanding the complex relationships between geopolymer concrete potential parameters and their compressive strength.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Explainable Artificial Intelligence (XAI) in auditing
    Zhang, Chanyuan
    Cho, Soohyun
    Vasarhelyi, Miklos
    INTERNATIONAL JOURNAL OF ACCOUNTING INFORMATION SYSTEMS, 2022, 46
  • [2] XAI-Explainable artificial intelligence
    Gunning, David
    Stefik, Mark
    Choi, Jaesik
    Miller, Timothy
    Stumpf, Simone
    Yang, Guang-Zhong
    SCIENCE ROBOTICS, 2019, 4 (37)
  • [3] Explainable Artificial Intelligence (XAI) in Insurance
    Owens, Emer
    Sheehan, Barry
    Mullins, Martin
    Cunneen, Martin
    Ressel, Juliane
    Castignani, German
    RISKS, 2022, 10 (12)
  • [4] A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI
    Tjoa, Erico
    Guan, Cuntai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (11) : 4793 - 4813
  • [5] A Review of Trustworthy and Explainable Artificial Intelligence (XAI)
    Chamola, Vinay
    Hassija, Vikas
    Sulthana, A. Razia
    Ghosh, Debshishu
    Dhingra, Divyansh
    Sikdar, Biplab
    IEEE ACCESS, 2023, 11 : 78994 - 79015
  • [6] The Pragmatic Turn in Explainable Artificial Intelligence (XAI)
    Paez, Andres
    MINDS AND MACHINES, 2019, 29 (03) : 441 - 459
  • [7] Explainable Artificial Intelligence (XAI) Adoption and Advocacy
    Ridley, Michael
    INFORMATION TECHNOLOGY AND LIBRARIES, 2022, 41 (02)
  • [8] Special issue on Explainable Artificial Intelligence (XAI)
    Miller, Tim
    Hoffman, Robert
    Amir, Ofra
    Holzinger, Andreas
    ARTIFICIAL INTELLIGENCE, 2022, 307
  • [9] Evaluation Metrics in Explainable Artificial Intelligence (XAI)
    Coroama, Loredana
    Groza, Adrian
    ADVANCED RESEARCH IN TECHNOLOGIES, INFORMATION, INNOVATION AND SUSTAINABILITY, ARTIIS 2022, PT I, 2022, 1675 : 401 - 413
  • [10] The Pragmatic Turn in Explainable Artificial Intelligence (XAI)
    Andrés Páez
    Minds and Machines, 2019, 29 : 441 - 459