The Kummer ratio of the relative class number for prime cyclotomic fields

被引:0
|
作者
Kandhil, Neelam [1 ]
Languasco, Alessandro [2 ]
Moree, Pieter [1 ]
Eddin, Sumaia Saad [3 ]
Sedunova, Alisa [4 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[2] Univ Padua, Dipartimento Matemat Tullio Levi Civ, Via Trieste 63, I-35121 Padua, Italy
[3] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, Altenbergerstr 69, A-4040 Linz, Austria
[4] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
基金
奥地利科学基金会;
关键词
Cyclotomic fields; Class number; Kummer conjecture; 1ST FACTOR; COMPUTATION; BOUNDS;
D O I
10.1016/j.jmaa.2024.128368
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Kummer's conjecture predicts the asymptotic growth of the relative class number of prime cyclotomic fields. We substantially improve the known bounds of Kummer's ratio under three scenarios: no Siegel zero, presence of Siegel zero and assuming the Riemann Hypothesis for the Dirichlet L-series attached to odd characters only. The numerical work in this paper extends and improves on our earlier preprint https:// arxiv .org /abs /1908 .01152 and demonstrates our theoretical results. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons .org /licenses /by -nc /4 .0/).
引用
下载
收藏
页数:24
相关论文
共 50 条