GLOBAL SOLVABILITY OF AN INVERSE PROBLEM FOR A MOORE-GIBSON-THOMPSON EQUATION WITH PERIODIC BOUNDARY AND INTEGRAL OVERDETERMINATION CONDITIONS

被引:0
|
作者
Durdiev, D. K. [1 ,2 ]
Boltaev, A. A. [1 ,3 ]
机构
[1] Acad Sci Uzbek, Romanovskii Inst Math, Bukhara Branch, 11 M Ikbal St, Bukhara 200117, Uzbekistan
[2] Bukhara State Univ, 11 Muhammad Ikbal St, Bukhara 200117, Uzbekistan
[3] North Caucasus Ctr Math Res VSC RAS, 1 Williams St, Mikhailovskoye 363110, Russia
关键词
Moore-Gibson-Thompson equation; initial-boundary problem; periodic boundary conditions; inverse problem; Fourier spectral method; Banach principle; ONE-DIMENSIONAL KERNEL; MEMORY; IDENTIFICATION;
D O I
10.32523/2306-6172-2024-12-2-35-49
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article studies the inverse problem of determining the pressure and convolution kernel in an integro-differential Moore-Gibson-Thompson equation with initial, periodic boundary and integral overdetermination conditions on the rectangular domain. By Fourier method this problem is reduced to an equivalent integral equation and on based of Banach's fixed point argument in a suitably chosen function space, the local solvability of the problem is proven. Then, the found solutions are continued throughout the entire domain of definition of the unknowns.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 50 条
  • [41] A note on the Moore-Gibson-Thompson equation with memory of type II
    Dell'Oro, Filippo
    Lasiecka, Irena
    Pata, Vittorino
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (04) : 1251 - 1268
  • [42] Solution of Inverse Euler-Bernoulli Problem with Integral Overdetermination and Periodic Boundary Conditions
    Baglan, Irem
    Kanca, Fatma
    Mishra, Vishnu Narayan
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2022, 17 (01): : 191 - 206
  • [43] The Galerkin Method for Fourth-Order Equation of the Moore-Gibson-Thompson Type with Integral Condition
    Mesloub, Ahlem
    Zarai, Abderrahmane
    Mesloub, Fatiha
    Cherif, Bahri-Belkacem
    Abdalla, Mohamed
    ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [44] Continuous dependence and convergence for a Moore-Gibson-Thompson thermoelastic problem
    Fernandez, Jose R.
    Pellicer, Marta
    Quintanilla, Ramon
    MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2024, 52 (08) : 5071 - 5087
  • [45] Existence and uniqueness for Moore-Gibson-Thompson equation with, source terms, viscoelastic memory and integral condition
    Choucha, Abdelbaki
    Boulaaras, Salah
    Ouchenane, Djamel
    Abdalla, Mohamed
    Mekawy, Ibrahim
    AIMS MATHEMATICS, 2021, 6 (07): : 7585 - 7624
  • [46] Controllability results for the Moore-Gibson-Thompson equation arising in nonlinear acoustics
    Lizama, Carlos
    Zamorano, Sebastian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (12) : 7813 - 7843
  • [47] Singular perturbation and initial layer for the abstract Moore-Gibson-Thompson equation
    Alvarez, Edgardo
    Lizama, Carlos
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 516 (01)
  • [48] New general decay results for a Moore-Gibson-Thompson equation with memory
    Liu, Wenjun
    Chen, Zhijing
    Chen, Dongqin
    APPLICABLE ANALYSIS, 2020, 99 (15) : 2622 - 2640
  • [49] General decay rate for a Moore-Gibson-Thompson equation with infinite history
    Liu, Wenjun
    Chen, Zhijing
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (02):
  • [50] Moore-Gibson-Thompson equation with memory in a history framework: a semigroup approach
    Alves, M. O.
    Caixeta, A. H.
    Jorge Silva, M. A.
    Rodrigues, J. H.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04):