3-D Basement Relief and Density Inversion Based on EfficientNetV2 Deep Learning Network

被引:0
|
作者
Zhang, Yu [1 ]
Xu, Zhengwei [1 ]
Xian, Minghao [1 ]
Zhdanov, Michael S. [2 ,3 ]
Lai, Changjie [4 ,5 ]
Wang, Rui [6 ]
Mao, Lifeng [1 ]
Zhao, Guangdong [1 ]
机构
[1] Chengdu Univ Technol, Minist Educ, Key Lab Earth Explorat & Informat Tech, Chengdu 610059, Peoples R China
[2] Univ Utah, Consortium Electromagnet Modeling & Invers CEMI, Salt Lake City, UT 84112 USA
[3] TechnoImaging, Salt Lake City, UT 84107 USA
[4] Engn Geol Brigade Jiangxi Bur Geol, Nanchang 330001, Peoples R China
[5] Jiangxi Inst Shale Gas Invest & Dev Res, Nanchang 330002, Peoples R China
[6] Changchun Univ Sci & Technol, Sch Comp Sci & Technol, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
Gravity; Geology; Data models; Training; Deep learning; Three-dimensional displays; Noise; Composite scaling technique; EfficientNetV2; fused-MBconv; gravity; inversion; SEDIMENTARY BASINS; FOCUSING INVERSION; GRAVITY INVERSION; 3D INVERSION; REGRESSION; ALGORITHM;
D O I
10.1109/TGRS.2024.3427711
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Gravity interface inversion is a critical technique in delineating the substructure of basins, providing essential technological and data support for oil and gas exploration. Traditional gravity inversion approaches often encounter issues such as suboptimal local solutions and limited resolution. Moreover, conventional deep learning inversion methods typically require extensive time for empirical parameter adjustment, hindering the achievement of optimal training outcomes. By utilizing Bouguer gravity anomaly data, this research pioneers the application of the EfficientNetV2 network in predicting 3-D basement relief interfaces and variations in overburden density. The network employs a composite scaling technique to adaptively adjust its width, depth, and input resolution, thereby identifying the most effective network configuration. Concurrently, the innovative Fused-MBconv convolutional module efficiently achieves superior results with a reduced number of network parameters. Specifically, in the Poyang Lake Basin study in Jiangxi Province, China, the EfficientNetV2 model demonstrated enhanced accuracy in predicting density variations of the basement interface and overlying strata compared to traditional methodologies.
引用
下载
收藏
页码:1 / 1
页数:15
相关论文
共 50 条
  • [21] Gravity data density interface inversion based on U-net deep learning network
    Li Yang
    Han LiGuo
    Zhou Shuai
    Lin Tao
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2023, 66 (01): : 401 - 411
  • [22] 3DSRNet: 3-D Spine Reconstruction Network Using 2-D Orthogonal X-Ray Images Based on Deep Learning
    Gao, Yuan
    Tang, Hui
    Ge, Rongjun
    Liu, Jin
    Chen, Xin
    Xi, Yan
    Ji, Xu
    Shu, Huazhong
    Zhu, Jian
    Coatrieux, Gouenou
    Coatrieux, Jean-Louis
    Chen, Yang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [23] Deep Correlated Joint Network for 2-D Image-Based 3-D Model Retrieval
    Nie, Wei-Zhi
    Liu, An-An
    Zhao, Sicheng
    Gao, Yue
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (03) : 1862 - 1871
  • [24] Reconstructing 2-D Basement Relief Using Gravity Data by Deep Neuron Network: An Application on Poyang Basin
    Wang, Rui
    Xu, Zhengwei
    Lai, Changjie
    Wang, Xuben
    Zhdanov, Michael S.
    Li, Guowei
    Cheng, Zhiyao
    Li, Jun
    Zhao, Guangdong
    Liang, Shengxian
    Li, Hua
    Zhang, Yuxin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 11
  • [25] A 3-D Magnetotelluric Inversion Method Based on the Joint Data-Driven and Physics-Driven Deep Learning Technology
    Ling, Weiwei
    Pan, Kejia
    Zhang, Jiajing
    He, Dongdong
    Zhong, Xin
    Ren, Zhengyong
    Tang, Jingtian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [26] A Novel 2.5D Deep Network Inversion of Gravity Anomalies to Estimate Basement Topography
    Ashena, Zahra
    Kabirzadeh, Hojjat
    Kim, Jeong Woo
    Wang, Xin
    Ali, Mohammed
    SPE RESERVOIR EVALUATION & ENGINEERING, 2023, 26 (04) : 1484 - 1497
  • [27] A Novel 2.5D Deep Network Inversion of Gravity Anomalies to Estimate Basement Topography
    Ashena Z.
    Kabirzadeh H.
    Kim J.W.
    Wang X.
    Ali M.
    SPE Reservoir Evaluation and Engineering, 2023, 26 (04): : 1484 - 1497
  • [28] 3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization
    Pallero, J. L. G.
    Fernandez-Martinez, J. L.
    Bonvalot, S.
    Fudym, O.
    JOURNAL OF APPLIED GEOPHYSICS, 2017, 139 : 338 - 350
  • [29] ANALYSIS OF DEEP LEARNING 3-D IMAGING METHODS BASED ON UAV SAR
    Liu, Changhao
    Wang, Yan
    Ding, Zegang
    Wei, Yangkai
    Huang, Jinyang
    Cai, Yawen
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2951 - 2954
  • [30] Deep-Learning-Based 3-D Surface Reconstruction-A Survey
    Farshian, Anis
    Goetz, Markus
    Cavallaro, Gabriele
    Debus, Charlotte
    Niessner, Matthias
    Benediktsson, Jon Atli
    Streit, Achim
    PROCEEDINGS OF THE IEEE, 2023, 111 (11) : 1464 - 1501