Can physics-informed neural networks beat the finite element method?

被引:4
|
作者
Grossmann, Tamara G. [1 ]
Komorowska, Urszula Julia [2 ]
Latz, Jonas [3 ]
Schonlieb, Carola-Bibiane [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Cambridge, Dept Comp Sci & Technol, 15 JJ Thomson Ave, Cambridge CB3 0FD, England
[3] Univ Manchester, Dept Math, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, England
关键词
partial differential equations; finite element method; deep learning; physics-informed neural networks; DEEP LEARNING FRAMEWORK; ALLEN-CAHN EQUATION; APPROXIMATION; ALGORITHM; SCHEMES;
D O I
10.1093/imamat/hxae011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Partial differential equations (PDEs) play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other sciences. To simulate such processes and systems, the solutions of PDEs often need to be approximated numerically. The finite element method, for instance, is a usual standard methodology to do so. The recent success of deep neural networks at various approximation tasks has motivated their use in the numerical solution of PDEs. These so-called physics-informed neural networks and their variants have shown to be able to successfully approximate a large range of PDEs. So far, physics-informed neural networks and the finite element method have mainly been studied in isolation of each other. In this work, we compare the methodologies in a systematic computational study. Indeed, we employ both methods to numerically solve various linear and nonlinear PDEs: Poisson in 1D, 2D and 3D, Allen-Cahn in 1D, semilinear Schr & ouml;dinger in 1D and 2D. We then compare computational costs and approximation accuracies. In terms of solution time and accuracy, physics-informed neural networks have not been able to outperform the finite element method in our study. In some experiments, they were faster at evaluating the solved PDE.
引用
收藏
页码:143 / 174
页数:32
相关论文
共 50 条
  • [21] DPM: A Novel Training Method for Physics-Informed Neural Networks in Extrapolation
    Kim, Jungeun
    Lee, Kookjin
    Lee, Dongeun
    Jhin, Sheo Yon
    Park, Noseong
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8146 - 8154
  • [22] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    [J]. ACTA NUMERICA, 2024, 33 : 633 - 713
  • [23] A Comparative Study of the Explicit Finite Difference Method and Physics-Informed Neural Networks for Solving the Burgers' Equation
    Savovic, Svetislav
    Ivanovic, Milos
    Min, Rui
    [J]. AXIOMS, 2023, 12 (10)
  • [24] Parallel Physics-Informed Neural Networks with Bidirectional Balance
    Huang, Yuhao
    Xu, Jiarong
    Fang, Shaomei
    Zhu, Zupeng
    Jiang, Linfeng
    Liang, Xiaoxin
    [J]. 6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 23 - 30
  • [25] The application of physics-informed neural networks to hydrodynamic voltammetry
    Chen, Haotian
    Kaetelhoen, Enno
    Compton, Richard G.
    [J]. ANALYST, 2022, 147 (09) : 1881 - 1891
  • [26] Boussinesq equation solved by the physics-informed neural networks
    Ruozhou Gao
    Wei Hu
    Jinxi Fei
    Hongyu Wu
    [J]. Nonlinear Dynamics, 2023, 111 : 15279 - 15291
  • [27] Design of Turing Systems with Physics-Informed Neural Networks
    Kho, Jordon
    Koh, Winston
    Wong, Jian Cheng
    Chiu, Pao-Hsiung
    Ooi, Chin Chun
    [J]. 2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1180 - 1186
  • [28] Physics-Informed Neural Networks for Cardiac Activation Mapping
    Costabal, Francisco Sahli
    Yang, Yibo
    Perdikaris, Paris
    Hurtado, Daniel E.
    Kuhl, Ellen
    [J]. FRONTIERS IN PHYSICS, 2020, 8
  • [29] Tackling the curse of dimensionality with physics-informed neural networks
    Hu, Zheyuan
    Shukla, Khemraj
    Karniadakis, George Em
    Kawaguchi, Kenji
    [J]. NEURAL NETWORKS, 2024, 176
  • [30] Physics-Informed Neural Networks for Heat Transfer Problems
    Cai, Shengze
    Wang, Zhicheng
    Wang, Sifan
    Perdikaris, Paris
    Karniadakis, George E. M.
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (06):