Detectable Continental Crust in the Earth's Deep Interior Inferred From Thermodynamic Modeling

被引:0
|
作者
Li, Yibing [1 ]
Chen, Yi [1 ,2 ]
Palin, Richard M. [3 ]
Tian, Xiaobo [1 ]
Liang, Xiaofeng [1 ]
Liu, Lijun [1 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, State Key Lab Lithospher & Environm Coevolut, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing, Peoples R China
[3] Univ Oxford, Dept Earth Sci, Oxford, England
基金
中国国家自然科学基金;
关键词
seismic velocity; thermodynamic modeling; subducted continent crust; mineral-physical database; mantle transition zone; high-velocity anomalies; FORMER STISHOVITE; PHASE-EQUILIBRIA; TRANSITION ZONE; SUBDUCTION; MANTLE; VELOCITY; PRESSURE; BENEATH; SLAB; CONSTRAINTS;
D O I
10.1029/2024GL111556
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Compelling evidence indicates that continental crust can subduct to > 300 km and even enter the mantle transition zone (MTZ). However, detecting continental materials within the deep Earth is challenging due to our incomplete knowledge about their physical properties at mantle conditions. We use a newly compiled mineral-physical database coupled with thermodynamic modeling to calculate seismic velocities of the subducted continental crust (SCC) beyond 150 km. Results show that the SCC has one seismically detectable window depth (300-390 km) with 4% V P anomaly. Besides, the upper crust has another two window depths (<250 < 250 km and 610-660 km) with anomalies of- 6.4%--1.6% and- 7.6%-- 2.2%, and 3.6%-7.9% and 3.9%- 8.6% for V P and V S compared to those of the ambient mantle, respectively. These predicted SCC characteristics match seismic anomalies at mantle depths and suggest subducted upper crust potentially contributing to the high-velocity anomalies in the MTZ.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Earth’s early continental crust formed from wet and oxidizing arc magmas
    Rong-Feng Ge
    Simon A. Wilde
    Wen-Bin Zhu
    Xiao-Lei Wang
    [J]. Nature, 2023, 623 : 334 - 339
  • [22] Earth's early continental crust formed from wet and oxidizing arc magmas
    Ge, Rong-Feng
    Wilde, Simon A.
    Zhu, Wen-Bin
    Wang, Xiao-Lei
    [J]. NATURE, 2023, 623 (7986) : 334 - 339
  • [23] Using a synthetic continental array to study the earth's interior
    Kennett, BLN
    vanderHilst, RD
    [J]. JOURNAL OF PHYSICS OF THE EARTH, 1996, 44 (06): : 669 - 674
  • [24] New windows on the Earth's deep interior
    Mao, H
    Hemley, RJ
    [J]. ULTRAHIGH-PRESSURE MINERALOGY: PHYSICS AND CHEMISTRY OF THE EARTH'S DEEP INTERIOR, 1998, 37 : 1 - 32
  • [25] On the thermal gradient in the Earth's deep interior
    Tirone, M.
    [J]. SOLID EARTH, 2016, 7 (01) : 229 - 238
  • [26] Early history of Earth's crust–mantle system inferred from hafnium isotopes in chondrites
    Martin Bizzarro
    Joel A. Baker
    Henning Haack
    David Ulfbeck
    Minik Rosing
    [J]. Nature, 2003, 421 : 931 - 933
  • [27] Oxygen isotopes trace the origins of Earth’s earliest continental crust
    Robert H. Smithies
    Yongjun Lu
    Christopher L. Kirkland
    Tim E. Johnson
    David R. Mole
    David C. Champion
    Laure Martin
    Heejin Jeon
    Michael T. D. Wingate
    Simon P. Johnson
    [J]. Nature, 2021, 592 : 70 - 75
  • [28] Forming Earth's Continental Crust: A Nontraditional Stable Isotope Perspective
    Aarons, Sarah M.
    Johnson, Aleisha C.
    Rader, Shelby T.
    [J]. ELEMENTS, 2021, 17 (06) : 413 - 418
  • [29] Could Iceland be a modern analogue for the Earth's early continental crust?
    Martin, E.
    Martin, H.
    Sigmarsson, O.
    [J]. TERRA NOVA, 2008, 20 (06) : 463 - 468
  • [30] Peridotite weathering is the missing ingredient of Earth’s continental crust composition
    Andreas Beinlich
    Håkon Austrheim
    Vasileios Mavromatis
    Ben Grguric
    Christine V. Putnis
    Andrew Putnis
    [J]. Nature Communications, 9