Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines

被引:63
|
作者
Tharwat, Alaa [1 ,2 ]
Moemen, Yasmine S. [2 ,3 ]
Hassanien, Aboul Ella [2 ,4 ]
机构
[1] Suez Canal Univ, Fac Engn, Ismailia, Egypt
[2] Sci Res Grp Egypt SRGE, Cairo, Egypt
[3] Menoufia Univ, Natl Liver Inst, Dept Clin Pathol, Menoufia, Egypt
[4] Cairo Univ, Fac Comp & Informat, Giza, Egypt
关键词
Imbalanced dataset; Random sampling; Synthetic Minority Over-sampling; Technique (SMOTE); Support Vector Machines (SVM); Whale Optimization Algorithm (WOA); Toxic effects; FEATURE-SELECTION; IMBALANCED DATA; ROUGH SETS; SYSTEM; SVM; PERFORMANCE; PREDICTION; PARAMETERS; DISCOVERY; BEHAVIOR;
D O I
10.1016/j.jbi.2017.03.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Measuring toxicity is an important step in drug development. Nevertheless, the current experimental methods used to estimate the drug toxicity are expensive and time-consuming, indicating that they are not suitable for large-scale evaluation of drug toxicity in the early stage of drug development. Hence, there is a high demand to develop computational models that can predict the drug toxicity risks. In this study, we used a dataset that consists of 553 drugs that biotransformed in liver. The toxic effects were calculated for the current data, namely, mutagenic, tumorigenic, irritant and reproductive effect. Each drug is represented by 31 chemical descriptors (features). The proposed model consists of three phases. In the first phase, the most discriminative subset of features is selected using rough set-based methods to reduce the classification time while improving the classification performance. In the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique (SMOTE), BorderLine SMOTE and Safe Level SMOTE are used to solve the problem of imbalanced dataset. In the third phase, the Support Vector Machines (SVM) classifier is used to classify an unknown drug into toxic or non-toxic. SVM parameters such as the penalty parameter and kernel parameter have a great impact on the classification accuracy of the model. In this paper, Whale Optimization Algorithm (WOA) has been proposed to optimize the parameters of SVM, so that the classification error can be reduced. The experimental results proved that the proposed model achieved high sensitivity to all toxic effects. Overall, the high sensitivity of the WOA + SVM model indicates that it could be used for the prediction of drug toxicity in the early stage of drug development. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:132 / 149
页数:18
相关论文
共 50 条
  • [21] Economic Growth Prediction Using Optimized Support Vector Machines
    Emsia, Elmira
    Coskuner, Cagay
    COMPUTATIONAL ECONOMICS, 2016, 48 (03) : 453 - 462
  • [22] Economic Growth Prediction Using Optimized Support Vector Machines
    Elmira Emsia
    Cagay Coskuner
    Computational Economics, 2016, 48 : 453 - 462
  • [23] Classification of EEG Signals by using Support Vector Machines
    Bayram, K. Sercan
    Kizrak, M. Ayyuce
    Bolat, Bulent
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (IEEE INISTA), 2013,
  • [24] Terrain Mapping and Classification Using Support Vector Machines
    Hata, Alberto Yukinobu
    Wolf, Denis Fernando
    2009 6TH LATIN AMERICAN ROBOTICS SYMPOSIUM, 2009, : 20 - 25
  • [25] Classification of Endoscopic Images using Support Vector Machines
    Surangsrirat, Decho
    Tapia, Moiez A.
    Zhao, Weizhao
    IEEE SOUTHEASTCON 2010: ENERGIZING OUR FUTURE, 2010, : 436 - 439
  • [26] Nonstationary signal classification using support vector machines
    Gretton, A
    Davy, M
    Doucet, A
    Rayner, PJW
    2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 305 - 308
  • [27] Audio signal classification using support vector machines
    Chen, Lei-Ting
    Wang, Ming-Jen
    Wang, Chia-Jiu
    Tai, Heng-Ming
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 2, PROCEEDINGS, 2006, 3972 : 188 - 193
  • [28] Online motion classification using support vector machines
    Cao, DW
    Masoud, OT
    Boley, D
    Papanikolopoulos, N
    2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 2291 - 2296
  • [29] Classification of Nucleotide Sequences Using Support Vector Machines
    Seo, Tae-Kun
    JOURNAL OF MOLECULAR EVOLUTION, 2010, 71 (04) : 250 - 267
  • [30] Classification of Raman Spectra using Support Vector Machines
    Kyriakides, Alexandros
    Kastanos, Evdokia
    Pitris, Constantinos
    2009 9TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS IN BIOMEDICINE, 2009, : 449 - +