Hopf bifurcations of twisted states in phase oscillators rings with nonpairwise higher-order interactions

被引:3
|
作者
Bick, Christian [1 ,2 ,3 ,4 ]
Bohle, Tobias [1 ,2 ,5 ]
Omel'chenko, Oleh E. [6 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, DE Boelelaan 1111, Amsterdam, Netherlands
[2] Tech Univ Munich, Inst Adv Study, Lichtenbergstr 2, D-85748 Garching, Germany
[3] Univ Exeter, Dept Math, Exeter EX4 4QF, England
[4] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[5] Tech Univ Munich, Sch Computat Informat & Technol, Dept Math, Boltzmannstr 3, D-85748 Garching, Germany
[6] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
来源
JOURNAL OF PHYSICS-COMPLEXITY | 2024年 / 5卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
oscillator networks; nonlocal coupling; higher-order interactions; Hopf bifurcation; twisted state; traveling wave; STABILITY;
D O I
10.1088/2632-072X/ad5635
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Synchronization is an essential collective phenomenon in networks of interacting oscillators. Twisted states are rotating wave solutions in ring networks where the oscillator phases wrap around the circle in a linear fashion. Here, we analyze Hopf bifurcations of twisted states in ring networks of phase oscillators with nonpairwise higher-order interactions. Hopf bifurcations give rise to quasiperiodic solutions that move along the oscillator ring at nontrivial speed. Because of the higher-order interactions, these emerging solutions may be stable. Using the Ott-Antonsen approach, we continue the emergent solution branches which approach anti-phase type solutions (where oscillators form two clusters whose phase is pi apart) as well as twisted states with a different winding number.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Finite-size effect in Kuramoto oscillators with higher-order interactions
    Suman, Ayushi
    Jalan, Sarika
    CHAOS, 2024, 34 (10)
  • [22] First-order transition to oscillation death in coupled oscillators with higher-order interactions
    Ghosh, Richita
    Verma, Umesh Kumar
    Jalan, Sarika
    Shrimali, Manish Dev
    PHYSICAL REVIEW E, 2023, 108 (04)
  • [23] HIGHER-ORDER DISTRIBUTED FEEDBACK OSCILLATORS
    BJORKHOL.JE
    SHANK, CV
    APPLIED PHYSICS LETTERS, 1972, 20 (08) : 306 - &
  • [24] Optimizing higher-order network topology for synchronization of coupled phase oscillators
    Ying Tang
    Dinghua Shi
    Linyuan Lü
    Communications Physics, 5
  • [25] OPTICAL BISTABILITY, INSTABILITIES AND HIGHER-ORDER BIFURCATIONS
    LUGIATO, LA
    BENZA, V
    NARDUCCI, LM
    FARINA, JD
    OPTICS COMMUNICATIONS, 1981, 39 (06) : 405 - 410
  • [26] HIGHER-ORDER BIFURCATIONS IN A BISTABLE SYSTEM WITH DELAY
    GAO, JY
    NARDUCCI, LM
    SADIKY, H
    SQUICCIARINI, M
    YUAN, JM
    PHYSICAL REVIEW A, 1984, 30 (02): : 901 - 905
  • [27] Cluster synchrony in systems of coupled phase oscillators with higher-order coupling
    Skardal, Per Sebastian
    Ott, Edward
    Restrepo, Juan G.
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [28] Optimizing higher-order network topology for synchronization of coupled phase oscillators
    Tang, Ying
    Shi, Dinghua
    Lu, Linyuan
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [29] DEGENERATE HOPF BIFURCATIONS VIA FEEDBACK-SYSTEM THEORY - HIGHER-ORDER HARMONIC-BALANCE
    MOIOLA, JL
    DESAGES, A
    ROMAGNOLI, J
    CHEMICAL ENGINEERING SCIENCE, 1991, 46 (5-6) : 1475 - 1490
  • [30] Death transitions in attractive-repulsive coupled oscillators with higher-order interactions
    Zhang, Zhonghua
    Wang, Liang
    Xu, Wei
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2024, 167