Hopf bifurcations of twisted states in phase oscillators rings with nonpairwise higher-order interactions

被引:3
|
作者
Bick, Christian [1 ,2 ,3 ,4 ]
Bohle, Tobias [1 ,2 ,5 ]
Omel'chenko, Oleh E. [6 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, DE Boelelaan 1111, Amsterdam, Netherlands
[2] Tech Univ Munich, Inst Adv Study, Lichtenbergstr 2, D-85748 Garching, Germany
[3] Univ Exeter, Dept Math, Exeter EX4 4QF, England
[4] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[5] Tech Univ Munich, Sch Computat Informat & Technol, Dept Math, Boltzmannstr 3, D-85748 Garching, Germany
[6] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
来源
JOURNAL OF PHYSICS-COMPLEXITY | 2024年 / 5卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
oscillator networks; nonlocal coupling; higher-order interactions; Hopf bifurcation; twisted state; traveling wave; STABILITY;
D O I
10.1088/2632-072X/ad5635
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Synchronization is an essential collective phenomenon in networks of interacting oscillators. Twisted states are rotating wave solutions in ring networks where the oscillator phases wrap around the circle in a linear fashion. Here, we analyze Hopf bifurcations of twisted states in ring networks of phase oscillators with nonpairwise higher-order interactions. Hopf bifurcations give rise to quasiperiodic solutions that move along the oscillator ring at nontrivial speed. Because of the higher-order interactions, these emerging solutions may be stable. Using the Ott-Antonsen approach, we continue the emergent solution branches which approach anti-phase type solutions (where oscillators form two clusters whose phase is pi apart) as well as twisted states with a different winding number.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Phase Oscillator Networks with Nonlocal Higher-Order Interactions: Twisted States, Stability, and Bifurcations
    Bick, Christian
    Boehle, Tobias
    Kuehn, Christian
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (03): : 1590 - 1638
  • [2] Bifurcations and collective states of Kuramoto oscillators with higher-order interactions and rotational symmetry breaking
    Mihara, Antonio
    Kuwana, Celia M.
    Budzinski, Roberto C.
    Muller, Lyle E.
    Medrano-T, Rene O.
    CHAOS, 2025, 35 (03)
  • [3] Determining bifurcations to explosive synchronization for networks of coupled oscillators with higher-order interactions
    Smith, Lauren D.
    Liu, Penghao
    PHYSICAL REVIEW E, 2024, 109 (02)
  • [4] Symmetry-breaking higher-order interactions in coupled phase oscillators
    Biswas, Dhrubajyoti
    Gupta, Sayan
    CHAOS SOLITONS & FRACTALS, 2024, 181
  • [5] Higher-order interactions in Kuramoto oscillators with inertia
    Jaros, Patrycja
    Ghosh, Subrata
    Dudkowski, Dawid
    Dana, Syamal K.
    Kapitaniak, Tomasz
    PHYSICAL REVIEW E, 2023, 108 (02)
  • [6] Effect of higher-order interactions on chimera states in two populations of Kuramoto oscillators
    Kar, Rumi
    Yadav, Akash
    Chandrasekar, V. K.
    Senthilkumar, D. V.
    CHAOS, 2024, 34 (02)
  • [7] Rotating clusters in phase-lagged Kuramoto oscillators with higher-order interactions
    Moyal, Bhuwan
    Rajwani, Priyanka
    Dutta, Subhasanket
    Jalan, Sarika
    PHYSICAL REVIEW E, 2024, 109 (03)
  • [8] Stochastic Kuramoto oscillators with inertia and higher-order interactions
    Rajwani, Priyanka
    Jalan, Sarika
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [9] Higher-Order Network Interactions Through Phase Reduction for Oscillators with Phase-Dependent Amplitude
    Bick, Christian
    Boehle, Tobias
    Kuehn, Christian
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (04)
  • [10] Bifurcations in the Kuramoto model with external forcing and higher-order interactions
    Costa, Guilherme S.
    Novaes, Marcel
    de Aguiar, Marcus A. M.
    CHAOS, 2024, 34 (12)