Applying Machine Learning in Marketing: An Analysis Using the NMF and k-Means Algorithms

被引:0
|
作者
Gallego, Victor [1 ,2 ]
Lingan, Jessica [1 ]
Freixes, Alfons [1 ]
Juan, Angel A. [2 ]
Osorio, Celia [2 ]
机构
[1] Euncet Business Sch, Business Analyt Res Grp, Terrassa 08225, Spain
[2] Univ Politecn Valencia, Res Ctr Prod Management & Engn, Alcoy 03801, Spain
关键词
machine learning; digital marketing; algorithms; artificial intelligence; BIG DATA; ARTIFICIAL-INTELLIGENCE; IMPACT;
D O I
10.3390/info15070368
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The integration of machine learning (ML) techniques into marketing strategies has become increasingly relevant in modern business. Utilizing scientific manuscripts indexed in the Scopus database, this article explores how this integration is being carried out. Initially, a focused search is undertaken for academic articles containing both the terms "machine learning" and "marketing" in their titles, which yields a pool of papers. These papers have been processed using the Supabase platform. The process has included steps like text refinement and feature extraction. In addition, our study uses two key ML methodologies: topic modeling through NMF and a comparative analysis utilizing the k-means clustering algorithm. Through this analysis, three distinct clusters emerged, thus clarifying how ML techniques are influencing marketing strategies, from enhancing customer segmentation practices to optimizing the effectiveness of advertising campaigns.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Support vector machine using K-means clustering
    Lee, S. J.
    Park, C.
    Jhun, M.
    Ko, J-Y.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2007, 36 (01) : 175 - 182
  • [22] Persimmon recognition machine learning and K-Means clustering algorithm
    Xie, Fuxiang
    Wang, Kai
    Song, Jian
    Teng, Dawei
    International Journal of Simulation: Systems, Science and Technology, 2015, 16 (02): : 1 - 5
  • [23] Machine learning in APOGEE Unsupervised spectral classification with K-means
    Garcia-Dias, Rafael
    Allende Prieto, Carlos
    Sanchez Almeida, Jorge
    Ordovas-Pascual, Ignacio
    ASTRONOMY & ASTROPHYSICS, 2018, 612
  • [24] K-means based on Active Learning for Support Vector Machine
    Gan, Jie
    Li, Ang
    Lei, Qian-Lin
    Ren, Hao
    Yang, Yun
    2017 16TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2017), 2017, : 727 - 731
  • [25] An aerosol classification scheme for global simulations using the K-means machine learning method
    Li, Jingmin
    Hendricks, Johannes
    Righi, Mattia
    Beer, Christof G.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2022, 15 (02) : 509 - 533
  • [26] Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning
    Javidan, Seyed Mohamad
    Banakar, Ahmad
    Vakilian, Keyvan Asefpour
    Ampatzidis, Yiannis
    SMART AGRICULTURAL TECHNOLOGY, 2023, 3
  • [27] K-means algorithms for functional data
    Lopez Garcia, Maria Luz
    Garcia-Rodenas, Ricardo
    Gonzalez Gomez, Antonia
    NEUROCOMPUTING, 2015, 151 : 231 - 245
  • [28] Applying IRT to estimate learning ability and K-means clustering in web based learning
    Chang, Wen-Chih
    Yang, Hsuan-Che
    Journal of Software, 2009, 4 (02) : 167 - 174
  • [29] A note on constrained k-means algorithms
    Ng, MK
    PATTERN RECOGNITION, 2000, 33 (03) : 515 - 519
  • [30] Deep k-Means: Jointly clustering with k-Means and learning representations
    Fard, Maziar Moradi
    Thonet, Thibaut
    Gaussier, Eric
    PATTERN RECOGNITION LETTERS, 2020, 138 : 185 - 192