On m-partite oriented semiregular representations of finite groups generated by two elements
被引:0
|
作者:
Du, Jia-Li
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
Nanjing Normal Univ, Key Lab NSLSCS, Minist Educ, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
Du, Jia-Li
[1
,2
]
Kwon, Young Soo
论文数: 0引用数: 0
h-index: 0
机构:
Yeungnam Univ, Math, Kyongsan 712749, South KoreaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
Kwon, Young Soo
[3
]
Yin, Fu-Gang
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
Yin, Fu-Gang
[4
]
机构:
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Key Lab NSLSCS, Minist Educ, Nanjing 210023, Peoples R China
[3] Yeungnam Univ, Math, Kyongsan 712749, South Korea
[4] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
In this paper we extend the notion of oriented regular representations in the context of m -partite oriented digraphs with an integer m >= 2. A group G is said to admit an m-partite oriented semiregular representation ( m -POSR for short) if there exists an m -partite oriented digraph such that its automorphism group is isomorphic to G and acts semiregularly on vertices with every part of the digraph as an orbit. In this paper, we proved that G admits an m -POSR of valency two except for several cases when G is a finite group generated by at most two elements and m >= 2 is an integer. (c) 2024 Published by Elsevier B.V.
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via R Cozzi 55, I-20125 Milan, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicaz, Via R Cozzi 55, I-20125 Milan, Italy
Di Martino, Lino
Pellegrini, Marco A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis, Via Musei 41, I-25121 Brescia, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicaz, Via R Cozzi 55, I-20125 Milan, Italy
Pellegrini, Marco A.
Zalesski, Alexandre E.
论文数: 0引用数: 0
h-index: 0
机构:
Acad Sci Belarus, Dept Phys Math & Informat, Prospekt Nezalejnasti 66, Minsk 220000, BELARUSUniv Milano Bicocca, Dipartimento Matemat & Applicaz, Via R Cozzi 55, I-20125 Milan, Italy