VPRQ: Verifiable and privacy-preserving range query over cloud data

被引:0
|
作者
Nie, Xueli [1 ]
Zhang, Aiqing [1 ]
Wang, Yong [1 ]
Wang, Weiqi [2 ]
Yu, Shui [2 ]
机构
[1] Anhui Normal Univ, Sch Phys & Elect Informat, Wuhu, Peoples R China
[2] Univ Technol Sydney, Sch Comp Sci, Sydney, NSW 2007, Australia
基金
中国国家自然科学基金;
关键词
Cloud data; Range query; Verification; Privacy preservation; EFFICIENT; ENCRYPTION; SEARCH; SCHEME;
D O I
10.1016/j.compeleceng.2024.109367
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Cloud has scalable storage and massive computing power, attracting data owners to outsource their data. However, owing to privacy concerns, data is typically encrypted prior to outsourcing, which inevitably presents challenges for querying the data effectively. Although encrypted range query is one of the most prevalent types and has been widely studied, existing schemes still have some problems. They inadvertently disclose the order relationship between the upper/lower bound of a range query and the encrypted index, leading to vulnerability inference attack. Moreover, the cloud server cannot be fully trusted, which may return incorrect and incomplete query results. To deal with these issues, we present a novel verifiable and privacy -preserving range query scheme (VPRQ). The VPRQ scheme utilizes 0/1 technique to transform range comparisons into set intersections. By doing so, it effectively hides the relationship between the upper/lower bound and the encrypted index. On this basis, we design an encrypted garbled bloom filter to securely and effectively achieve range query. This ensures that VPRQ scheme effectively resists inference attack. Additionally, point -value polynomial function technology is integrated into the VPRQ protocol to provide lightweight verification for the query results. Comprehensive security analysis and proof demonstrate its effectiveness in achieving the intended design objectives. Performance evaluations illustrate the feasibility and scalability of the proposed scheme, highlighting its practical applicability.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Efficient and Privacy-Preserving Similarity Range Query Over Encrypted Time Series Data
    Zheng, Yandong
    Lu, Rongxing
    Guan, Yunguo
    Shao, Jun
    Zhu, Hui
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (04) : 2501 - 2516
  • [22] Enabling Efficient and Privacy-Preserving Health Query Over Outsourced Cloud
    Wang, Guoming
    Lu, Rongxing
    Guan, Yong Liang
    IEEE ACCESS, 2018, 6 : 70831 - 70842
  • [23] Achieve Efficient and Privacy-Preserving Compound Substring Query over Cloud
    Yin, Fan
    Lu, Rongxing
    Zheng, Yandong
    Tang, Xiaohu
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [24] Verifiable Privacy-Preserving Data Aggregation Protocols
    Yasuda, Satoshi
    Koseki, Yoshihiro
    Sakai, Yusuke
    Kitagawa, Fuyuki
    Kawai, Yutaka
    Hanaoka, Goichiro
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, E103A (01) : 183 - 194
  • [25] Efficient and Privacy-Preserving Eclipse Query over Encrypted Data
    Song, Weiyu
    Zhang, Yonggang
    Sun, Lili
    Zheng, Yandong
    Lu, Rongxing
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1 - 6
  • [26] MUSE: An Efficient and Accurate Verifiable Privacy-Preserving Multikeyword Text Search over Encrypted Cloud Data
    Zhu Xiangyang
    Dai Hua
    Yi Xun
    Yang Geng
    Li Xiao
    SECURITY AND COMMUNICATION NETWORKS, 2017,
  • [27] A Privacy-preserving Fuzzy Search Scheme Supporting Logic Query over Encrypted Cloud Data
    Fu, Shaojing
    Zhang, Qi
    Jia, Nan
    Xu, Ming
    MOBILE NETWORKS & APPLICATIONS, 2021, 26 (04): : 1574 - 1585
  • [28] A Privacy-preserving Fuzzy Search Scheme Supporting Logic Query over Encrypted Cloud Data
    Shaojing Fu
    Qi Zhang
    Nan Jia
    Ming Xu
    Mobile Networks and Applications, 2021, 26 : 1574 - 1585
  • [29] An efficient privacy-preserving data query and dissemination scheme in vehicular cloud
    Hu, Peng
    Wang, Yongli
    Xiao, Gang
    Zhou, Junlong
    Gong, Bei
    Wang, Yongjian
    PERVASIVE AND MOBILE COMPUTING, 2020, 65
  • [30] Towards Efficient and Privacy-Preserving High-Dimensional Range Query in Cloud
    Sun, Lili
    Zhang, Yonggang
    Zheng, Yandong
    Song, Weiyu
    Lu, Rongxing
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (05) : 3766 - 3781