Transport of perfluoroalkyl substances across human induced pluripotent stem cell-derived intestinal epithelial cells in comparison with primary human intestinal epithelial cells and Caco-2 cells

被引:1
|
作者
Janssen, Aafke W. F. [1 ]
Duivenvoorde, Loes P. M. [1 ]
Beekmann, Karsten [1 ]
Pinckaers, Nicole [1 ]
van der Hee, Bart [2 ]
Noorlander, Annelies [1 ]
Leenders, Liz L. [1 ]
Louisse, Jochem [1 ,3 ]
van der Zande, Meike [1 ]
机构
[1] Wageningen Food Safety Res WFSR, Wageningen Univ & Res, Akkermaalsbos 2, NL-6708 WB Wageningen, Netherlands
[2] Wageningen Univ, Anim Sci Grp, Elst 1, NL-6708 WD Wageningen, Netherlands
[3] European Food Safety Author EFSA, Parma, Italy
关键词
PFAS; Toxicology; Stem cells; Gastrointestinal tract; Transport; HUMAN EXPOSURE; ACID; DISPOSITION; ABSORPTION; PATHWAYS; DRUGS; PFOA;
D O I
10.1007/s00204-024-03851-x
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Humans can be exposed to per- and polyfluoroalkyl substances (PFASs) via many exposure routes, including diet, which may lead to several adverse health effects. So far, little is known about PFAS transport across the human intestinal barrier. In the current study, we aimed to assess the transport of 5 PFASs (PFOS, PFOA, PFNA, PFHxS and HFPO-DA) in a human induced pluripotent stem cell (hiPSC)-derived intestinal epithelial cell (IEC) model. This model was extensively characterized and compared with the widely applied human colonic adenocarcinoma cell line Caco-2 and a human primary IEC-based model, described to most closely resemble in vivo tissue. The hiPSC-derived IEC layers demonstrated polarized monolayers with tight junctions and a mucus layer. The monolayers consisted of enterocytes, stem cells, goblet cells, enteroendocrine cells, and Paneth cells that are also present in native tissue. Transcriptomics analysis revealed distinct differences in gene expression profiles, where the hiPSC-derived IECs showed the highest expression of intestinal tissue-specific genes relative to the primary IEC-based model and the Caco-2 cells clustered closer to the primary IEC-based model than the hiPSC-derived IECs. The order of PFAS transport was largely similar between the models and the apparent permeability (Papp) values of PFAS in apical to basolateral direction in the hiPSC-derived IEC model were in the following order: PFHxS > PFOA > HFPO-DA > PFNA > PFOS. In conclusion, the hiPSC-derived IEC model highly resembles human intestinal physiology and is therefore a promising novel in vitro model to study transport of chemicals across the intestinal barrier for risk assessment of chemicals.
引用
收藏
页码:3777 / 3795
页数:19
相关论文
共 50 条
  • [41] Adherence of Clostridium perfringens spores to human intestinal epithelial Caco-2 cells
    Sakanoue, Hideyo
    Nakano, Takashi
    Sano, Kouichi
    Yasugi, Mayo
    Monma, Chie
    Miyake, Masami
    FEMS MICROBIOLOGY LETTERS, 2018, 365 (05)
  • [42] Secretory transport of p-aminohippuric acid across intestinal epithelial cells in Caco-2 cells and isolated intestinal tissue
    Naruhashi, K
    Tamai, I
    Sai, Y
    Suzuki, N
    Tsuji, A
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2001, 53 (01) : 73 - 81
  • [43] Multiple pathways for fluoroquinolone secretion by human intestinal epithelial (Caco-2) cells
    Lowes, S
    Simmons, NL
    BRITISH JOURNAL OF PHARMACOLOGY, 2002, 135 (05) : 1263 - 1275
  • [44] Transport of artemisinin and sodium artesunate in Caco-2 intestinal epithelial cells
    Augustijns, P
    DHulst, A
    VanDaele, J
    Kinget, R
    JOURNAL OF PHARMACEUTICAL SCIENCES, 1996, 85 (06) : 577 - 579
  • [45] TRANSPORT AND PERMEABILITY PROPERTIES OF HUMAN CACO-2 CELLS - AN INVITRO MODEL OF THE INTESTINAL EPITHELIAL-CELL BARRIER
    WILSON, G
    HASSAN, IF
    DIX, CJ
    WILLIAMSON, I
    SHAH, R
    MACKAY, M
    ARTURSSON, P
    JOURNAL OF CONTROLLED RELEASE, 1990, 11 (1-3) : 25 - 40
  • [46] Evaluation of Function and Features of Human Induced Pluripotent Stem Cell-Derived Small Intestinal Epithelial Cells for Analyzing Peptide Drug Intestinal Absorption Profiles
    Itagaki, Mai
    Kamei, Noriyasu
    Takeda-Morishita, Mariko
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2023, 112 (09) : 2591 - 2595
  • [47] Substrate-induced inhibition of the serotonin transporter in human intestinal epithelial (Caco-2) cells
    Gill, RK
    Saksena, S
    Alrefai, WA
    Tyagi, S
    Sarwar, Z
    Dudeja, PK
    GASTROENTEROLOGY, 2004, 126 (04) : A297 - A297
  • [48] Comparison between active and passive drug transport in human intestinal epithelial (Caco-2) cells in vitro and human jejunum in vivo
    Lennernas, H
    Palm, K
    Fagerholm, U
    Artursson, P
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1996, 127 (01) : 103 - 107
  • [49] Uptake and Transport Mechanism of Dihydromyricetin Across Human Intestinal Caco-2 Cells
    Xiang, Dong
    Fan, Li
    Hou, Xiao-long
    Xiong, Wei
    Shi, Chun-yang
    Wang, Wen-qing
    Fang, Jian-guo
    JOURNAL OF FOOD SCIENCE, 2018, 83 (07) : 1941 - 1947
  • [50] Modeling Intestinal Epithelial Response to Interferon-γ in Induced Pluripotent Stem Cell-Derived Human Intestinal Organoids
    Workman, Michael J.
    Troisi, Elissa
    Targan, Stephan R.
    Svendsen, Clive N.
    Barrett, Robert J.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (01) : 1 - 14