Matrix-weighted Besov-Triebel-Lizorkin spaces with logarithmic smoothness

被引:2
|
作者
Li, Ziwei [1 ]
Yang, Dachun [2 ]
Yuan, Wen [2 ]
机构
[1] Beijing Univ Chem Technol, Coll Math & Phys, Beijing 100029, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Besov-Triebel-Lizorkin space; Matrix weight; A(p) dimension; Logarithmic smoothness; Peetre maximal function; Pointwise multiplier; POINTWISE MULTIPLIERS; SHARP EMBEDDINGS; A(P) WEIGHTS; INEQUALITIES; WAVELETS; DUALITY;
D O I
10.1016/j.bulsci.2024.103445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the authors study the matrix -weighted Besov- Triebel-Lizorkin spaces with logarithmic smoothness. Via first obtaining the L p ( R n )-boundedness and the Fefferman- Stein type vector -valued inequality of matrix -weighted Peetretype maximal functions with the exquisite ranges of indices in terms of the A p dimension of matrix weights under consideration, the authors establish an equivalent characterization of these spaces in terms of the matrix -weighted Peetretype maximal functions, which further implies that these spaces are well defined. As an application, the authors obtain the boundedness of some pointwise multipliers on these spaces and, even back to classical Besov-Triebel-Lizorkin spaces, some of them are also new. (c) 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:54
相关论文
共 50 条
  • [31] Traces and extensions of matrix-weighted Besov spaces
    Frazier, Michael
    Roudenko, Svetlana
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 181 - 192
  • [33] A Mean Characterization of Weighted Anisotropic Besov and Triebel-Lizorkin Spaces
    Li, Baode
    Bownik, Marcin
    Yang, Dachun
    Yuan, Wen
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2014, 33 (02): : 125 - 147
  • [34] WEIGHTED BESOV AND TRIEBEL-LIZORKIN SPACES ASSOCIATED WITH OPERATORS AND APPLICATIONS
    Huy-Qui Bui
    The Anh Bui
    Xuan Thinh Duong
    FORUM OF MATHEMATICS SIGMA, 2020, 8
  • [35] Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
    De Napoli, Pablo L.
    Drelichman, Irene
    Saintier, Nicolas
    STUDIA MATHEMATICA, 2016, 233 (01) : 47 - 65
  • [36] GENERALIZED BESOV SPACES AND TRIEBEL-LIZORKIN SPACES
    Chin-Cheng Lin
    AnalysisinTheoryandApplications, 2008, 24 (04) : 336 - 350
  • [37] Besov and Triebel–Lizorkin spaces on Lie groups
    Tommaso Bruno
    Marco M. Peloso
    Maria Vallarino
    Mathematische Annalen, 2020, 377 : 335 - 377
  • [38] Harmonic Besov and Triebel–Lizorkin Spaces on the Ball
    Kamen Ivanov
    Pencho Petrushev
    Journal of Fourier Analysis and Applications, 2017, 23 : 1062 - 1096
  • [39] Variable Besov and Triebel-Lizorkin spaces
    Xu, Jingshi
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2008, 33 (02) : 511 - 522
  • [40] LAGUERRE OPERATOR AND ITS ASSOCIATED WEIGHTED BESOV AND TRIEBEL-LIZORKIN SPACES
    The Anh Bui
    Duong, Xuan Thinh
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (03) : 2109 - 2150