PAFNet: Pillar Attention Fusion Network for Vehicle-Infrastructure Cooperative Target Detection Using LiDAR

被引:1
|
作者
Wang, Luyang [1 ,2 ]
Lan, Jinhui [1 ,2 ]
Li, Min [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Dept Instrument Sci & Technol, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Engn Res Ctr Ind Spectrum Imaging, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 04期
关键词
vehicle-infrastructure cooperative; LiDAR; target detection; feature fusion;
D O I
10.3390/sym16040401
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the development of autonomous driving, consensus is gradually forming around vehicle-infrastructure cooperative (VIC) autonomous driving. The VIC environment-sensing system uses roadside sensors in collaboration with automotive sensors to capture traffic target information symmetrically from both the roadside and the vehicle, thus extending the perception capabilities of autonomous driving vehicles. However, the current target detection accuracy for feature fusion based on roadside LiDAR and automotive LiDAR is relatively low, making it difficult to satisfy the sensing requirements of autonomous vehicles. This paper proposes PAFNet, a VIC pillar attention fusion network for target detection, aimed at improving LiDAR target detection accuracy under feature fusion. The proposed spatial and temporal cooperative fusion preprocessing method ensures the accuracy of the fused features through frame matching and coordinate transformation of the point cloud. In addition, this paper introduces the first anchor-free method for 3D target detection for VIC feature fusion, using a centroid-based approach for target detection. In the feature fusion stage, we propose the grid attention feature fusion method. This method uses the spatial feature attention mechanism to fuse the roadside and vehicle-side features. The experiment on the DAIR-V2X-C dataset shows that PAFNet achieved a 6.92% higher detection accuracy in 3D target detection than FFNet in urban scenes.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Fusion network for small target detection based on YOLO and attention mechanism
    Xu, Caie
    Dong, Zhe
    Zhong, Shengyun
    Chen, Yijiang
    Pan, Sishun
    Wu, Mingyang
    [J]. OPTOELECTRONICS LETTERS, 2024, 20 (06) : 372 - 378
  • [22] CenterCoop: Center-Based Feature Aggregation for Communication-Efficient Vehicle-Infrastructure Cooperative 3D Object Detection
    Zhou, Linyi
    Gan, Zhongxue
    Fan, Jiayuan
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (04) : 3570 - 3577
  • [23] DAIR-V2X: A Large-Scale Dataset for Vehicle-Infrastructure Cooperative 3D Object Detection
    Yu, Haibao
    Luo, Yizhen
    Shu, Mao
    Huo, Yiyi
    Yang, Zebang
    Shi, Yifeng
    Guo, Zhenglong
    Li, Hanyu
    Hu, Xing
    Yuan, Jirui
    Nie, Zaiqing
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 21329 - 21338
  • [24] AutoGrAN: Autonomous Vehicle LiDAR Contaminant Detection using Graph Attention Networks
    Jati, Grafika
    Molan, Martin
    Khan, Junaid Ahmed
    Barchi, Francesco
    Bartolini, Andrea
    Mercurio, Giuseppe
    Acquaviva, Andrea
    [J]. COMPANION OF THE 15TH ACM/SPEC INTERNATIONAL CONFERENCE ON PERFORMANCE ENGINEERING, ICPE COMPANION 2024, 2024, : 112 - 119
  • [25] A Cloud Infrastructure for Target Detection and Tracking Using Audio and Video Fusion
    Liu, Kui
    Liu, Bingwei
    Blasch, Erik
    Shen, Dan
    Wang, Zhonghai
    Ling, Haibin
    Chen, Genshe
    [J]. 2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2015,
  • [26] Vehicle-target detection network for SAR images based on the attention mechanism
    Zhang Q.
    Yang X.
    Zhao S.
    Wei D.
    Han Z.
    [J]. Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (01): : 36 - 47
  • [27] Object Detection and Segmentation using LiDAR-Camera Fusion for Autonomous Vehicle
    Senapati, Mrinal
    Anand, Bhaskar
    Thakur, Abhishek
    Verma, Harshal
    Rajalakshmi, P.
    [J]. 2021 FIFTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC 2021), 2021, : 123 - 124
  • [28] Global attention network with multiscale feature fusion for infrared small target detection
    Zhang, Fan
    Lin, Shunlong
    Xiao, Xiaoyang
    Wang, Yun
    Zhao, Yuqian
    [J]. OPTICS AND LASER TECHNOLOGY, 2024, 168
  • [29] AFFPN: Attention Fusion Feature Pyramid Network for Small Infrared Target Detection
    Zuo, Zhen
    Tong, Xiaozhong
    Wei, Junyu
    Su, Shaojing
    Wu, Peng
    Guo, Runze
    Sun, Bei
    [J]. REMOTE SENSING, 2022, 14 (14)
  • [30] Target Detection on Water Surfaces Using Fusion of Camera and LiDAR Based Information
    Li, Yongguo
    Wang, Yuanrong
    Xie, Jia
    Xu, Caiyin
    Zhang, Kun
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 467 - 486