Levodopa-induced dyskinesia in Parkinson's disease: Insights from cross-cohort prognostic analysis using machine learning

被引:0
|
作者
Loo, Rebecca Ting Jiin [1 ]
Tsurkalenko, Olena [2 ,3 ,4 ,5 ,6 ]
Klucken, Jochen [4 ,5 ,6 ]
Mangone, Graziella [7 ]
Khoury, Fouad [7 ]
Vidailhet, Marie [7 ]
Corvol, Jean-Christophe [7 ]
Kruger, Rejko [2 ,3 ,8 ]
Glaab, Enrico [1 ]
机构
[1] Univ Luxembourg, Luxembourg Ctr Syst Biomed LCSB, Biomed Data Sci, Esch Sur Alzette, Luxembourg
[2] Univ Luxembourg, Luxembourg Ctr Syst Biomed LCSB, Translat Neurosci, Esch Sur Alzette, Luxembourg
[3] Luxembourg Inst Hlth LIH, Transversal Translat Med, Strassen, Luxembourg
[4] Univ Luxembourg, Luxembourg Ctr Syst Biomed LCSB, Digital Med Grp, Esch sur Alzette, Luxembourg
[5] Luxembourg Inst Hlth LIH, Dept Precis Hlth, Digital Med Grp, Strassen, Luxembourg
[6] Ctr Hosp Luxembourg CHL, Digital Med Grp, Esch sur Alzette, Luxembourg
[7] Sorbonne Univ, Pitie Salpetriere Hosp, Assistance Publ Hop Paris, Dept Neurol,ICM,Inserm,CNRS,Paris Brain Inst, F-75013 Paris, France
[8] Ctr Hosp Luxembourg CHL, Dept Neurol, Luxembourg, Luxembourg
关键词
Levodopa-induced dyskinesia; Longitudinal cohorts; Prognosis; Cross-cohort analysis; Machine learning; Predictive modeling; MOTOR;
D O I
10.1016/j.parkreldis.2024.107054
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Prolonged levodopa treatment in Parkinson's disease (PD) often leads to motor complications, including levodopa-induced dyskinesia (LID). Despite continuous levodopa treatment, some patients do not develop LID symptoms, even in later stages of the disease. Objective: This study explores machine learning (ML) methods using baseline clinical characteristics to predict the development of LID in PD patients over four years, across multiple cohorts. Methods: Using interpretable ML approaches, we analyzed clinical data from three independent longitudinal PD cohorts (LuxPARK, n = 356; PPMI, n = 484; ICEBERG, n = 113) to develop cross-cohort prognostic models and identify potential predictors for the development of LID. We examined cohort-specific and shared predictive factors, assessing model performance and stability through cross-validation analyses. Results: Consistent cross-validation results for single and multiple cohort analyses highlighted the effectiveness of the ML models and identified baseline clinical characteristics with significant predictive value for the LID prognosis in PD. Predictors positively correlated with LID include axial symptoms, freezing of gait, and rigidity in the lower extremities. Conversely, the risk of developing LID was inversely associated with the occurrence of resting tremors, higher body weight, later onset of PD, and visuospatial abilities. Conclusions: This study presents interpretable ML models for dyskinesia prognosis with significant predictive power in cross-cohort analyses. The models may pave the way for proactive interventions against dyskinesia in PD by optimizing levodopa dosing regimens and adjunct treatments with dopamine agonists or MAO-B inhibitors, and by employing non-pharmacological interventions such as dietary adjustments affecting levodopa absorption for high-risk LID patients.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Clinical phenotype and risk of levodopa-induced dyskinesia in Parkinson's disease
    Nicoletti, Alessandra
    Mostile, Giovanni
    Nicoletti, Giuseppe
    Arabia, Gennarina
    Iliceto, Giovanni
    Lamberti, Paolo
    Marconi, Roberto
    Morgante, Letterio
    Barone, Paolo
    Quattrone, Aldo
    Zappia, Mario
    JOURNAL OF NEUROLOGY, 2016, 263 (05) : 888 - 894
  • [22] Clinical signs associated with levodopa-induced dyskinesia in Parkinson's disease
    Kipfer, S.
    Stephan, M. A.
    Schuepbach, M.
    Kaelin-Lang, A.
    MOVEMENT DISORDERS, 2009, 24 : S267 - S267
  • [23] A Web Resource for Levodopa-Induced Dyskinesia Genetics in Parkinson's Disease
    Blankenburg, Hagen
    Falla, Marika
    Schwienbacher, Christine
    Fabbrini, Giovanni
    Berardelli, Alfredo
    Pramstaller, Peter P.
    Domingues, Francisco S.
    NEUROINFORMATICS, 2017, 15 (03) : 297 - 300
  • [24] Effect of Safinamide on Levodopa-Induced Dyskinesia in Patients with Parkinson's Disease
    Bhatt, Mohit
    Chirileanu, Dana
    Meshram, Chandrashekhar
    Stanzione, Paolo
    Forrest, Emma C.
    NEUROLOGY, 2010, 74 (09) : A319 - A319
  • [25] Risk factors for levodopa-induced dyskinesia in Parkinson's disease patients
    Djuric, Gordana
    Markovic, Vladana
    Pekmezovic, Tatjana
    Tomic, Aleksandra
    Kresojevic, Nikola
    Kostic, Vladimir
    Svetel, Marina
    VOJNOSANITETSKI PREGLED, 2017, 74 (10) : 921 - 926
  • [26] Levodopa-induced Dyskinesia in Parkinson’s disease: Epidemiology, etiology, and treatment
    Theresa A. Zesiewicz
    Kelly L. Sullivan
    Robert A. Hauser
    Current Neurology and Neuroscience Reports, 2007, 7 : 302 - 310
  • [27] White matter alterations in Parkinson's disease with levodopa-induced dyskinesia
    Ogawa, Takashi
    Hatano, Taku
    Kamagata, Koji
    Andica, Christina
    Takeshige-Amano, Haruka
    Uchida, Wataru
    Saito, Yuya
    Shimo, Yasushi
    Oyama, Genko
    Umemura, Atsushi
    Iwamuro, Hirokazu
    Ito, Masanobu
    Hori, Masaaki
    Aoki, Shigeki
    Hattori, Nobutaka
    PARKINSONISM & RELATED DISORDERS, 2021, 90 : 8 - 14
  • [28] Pridopidine for the treatment of Levodopa-induced Dyskinesia in patients with Parkinson's disease
    Geva, M.
    McGarry, A.
    Cohen, Y.
    Johnston, T.
    de Somer, M.
    Kieburtz, K.
    Hayden, M.
    Brotchie, J.
    Olanow, C.
    MOVEMENT DISORDERS, 2020, 35 : S396 - S396
  • [29] Levodopa-induced dyskinesia in Parkinson disease: Sleep matters
    Amato, Ninfa
    Manconi, Mauro
    Moeller, Jens C.
    Sarasso, Simone
    Stanzione, Paolo
    Staedler, Claudio
    Kaelin-Lang, Alain
    Galati, Salvatore
    ANNALS OF NEUROLOGY, 2018, 84 (06) : 905 - 917
  • [30] EEG biofeedback training for Parkinson's disease with levodopa-induced dyskinesia
    Erickson-Davis, C.
    Anderson, J.
    Richter, S.
    Wielinski, C.
    Parashos, S.
    MOVEMENT DISORDERS, 2009, 24 : S59 - S59