Combining Google Earth historical imagery and UAV photogrammetry for urban development analysis

被引:1
|
作者
Iheaturu, Chima [2 ]
Ayodele, Emmanuel [2 ]
Egogo-Stanley, Andy [2 ]
Musa, Solomon [3 ]
Speranza, Chinwe Ifejika [1 ]
机构
[1] Univ Bern, Inst Geog, Bern, Switzerland
[2] Univ Lagos, Dept Surveying & Geoinformat, Lagos, Nigeria
[3] Fed Capital Dev Author, Dept Survey & Mapping, Abuja, Nigeria
关键词
Structure-from-motion photogrammetry; Change detection analysis; Parsimonious land use; Building heights; digital map creation; ACCURACY;
D O I
10.1016/j.mex.2024.102785
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rural -urban migration often triggers additional demand for housing and infrastructural development to cater for the growing population in urban areas. Consequently, town planners and urban development authorities need to understand the urban development trend to make sustainable urban planning decisions. Yet, methods to analyse changes and trends in urban spatial development are often complex and require costly data collection. This article thus presents a simplified method to analyse the urban development trend in an area. The method integrates Google Earth (GE) historical imagery (baseline data) and unmanned aerial vehicle (UAV) photogrammetry (recent data) to quantify the changes over time. This approach can be applied to study the urban development trends in low-income countries with budget constraints. The method is discussed under four main headings: (1) background, (2) method details, (3) limitations, and (4) conclusion. center dot Google Earth historical image can be extracted with its associated world file. center dot The population of an area can be estimated by using average household size data and the number of residential buildings in the area. center dot The building height ratio can be used to ascertain if the land is being used parsimoniously.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Google Earth imagery coupled with on-screen digitisation for urban land use mapping: case study of Hambantota, Sri Lanka
    Madarasinghe, S. K.
    Yapa, K. K. A. S.
    Jayatissa, L. P.
    JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2020, 48 (04): : 357 - 366
  • [32] The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain)
    Rosa María Mateos
    Jose M. Azañón
    Francisco J. Roldán
    Davide Notti
    Vicente Pérez-Peña
    Jorge P. Galve
    Jose Luis Pérez-García
    Carlos M. Colomo
    Jose M. Gómez-López
    Oriol Montserrat
    Nùria Devantèry
    Francisco Lamas-Fernández
    Francisca Fernández-Chacón
    Landslides, 2017, 14 : 743 - 754
  • [33] The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain)
    Maria Mateos, Rosa
    Azanon, Jose M.
    Roldan, Francisco J.
    Notti, Davide
    Perez-Pena, Vicente
    Galve, Jorge P.
    Luis Perez-Garcia, Jose
    Colomo, Carlos M.
    Gomez-Lopez, Jose M.
    Montserrat, Oriol
    Devantery, Nuria
    Lamas-Fernandez, Francisco
    Fernandez-Chacon, Francisca
    LANDSLIDES, 2017, 14 (02) : 743 - 754
  • [34] High-Resolution Urban Land Mapping in China from Sentinel 1A/2 Imagery Based on Google Earth Engine
    Sun, Zhongchang
    Xu, Ru
    Du, Wenjie
    Wang, Lei
    Lu, Dengsheng
    REMOTE SENSING, 2019, 11 (07)
  • [35] Surface water dynamics analysis based on sentinel imagery and Google Earth Engine Platform: a case study of Jayakwadi dam
    Vidya. U. Kandekar
    Chaitanya. B. Pande
    Jayaraman Rajesh
    A. A. Atre
    S. D. Gorantiwar
    S. A. Kadam
    Bhau Gavit
    Sustainable Water Resources Management, 2021, 7
  • [36] Surface water dynamics analysis based on sentinel imagery and Google Earth Engine Platform: a case study of Jayakwadi dam
    Kandekar, Vidya. U.
    Pande, Chaitanya. B.
    Rajesh, Jayaraman
    Atre, A. A.
    Gorantiwar, S. D.
    Kadam, S. A.
    Gavit, Bhau
    SUSTAINABLE WATER RESOURCES MANAGEMENT, 2021, 7 (03)
  • [37] Urban Sprawl and COVID-19 Impact Analysis by Integrating Deep Learning with Google Earth Engine
    Zarro, Chiara
    Cerra, Daniele
    Auer, Stefan
    Ullo, Silvia Liberata
    Reinartz, Peter
    REMOTE SENSING, 2022, 14 (09)
  • [38] Monitoring spatiotemporal changes of urban surface water based on satellite imagery and Google Earth Engine platform in Dhaka City from 1990 to 2021
    Md. Jakir Hossain
    Md. Munir Mahmud
    Sheikh Tawhidul Islam
    Bulletin of the National Research Centre, 47 (1)
  • [39] RoadVecNet: a new approach for simultaneous road network segmentation and vectorization from aerial and google earth imagery in a complex urban set-up
    Abdollahi, Abolfazl
    Pradhan, Biswajeet
    Alamri, Abdullah
    GISCIENCE & REMOTE SENSING, 2021, 58 (07) : 1151 - 1174
  • [40] UAV Photogrammetry Implementation Based on GNSS CORS UDIP to Enhance Cadastral Surveying and Monitoring Urban Development (Case Study: Ngresep Semarang)
    Yuwono, B. D.
    Suprayogi, A.
    Azeriansyah, R.
    Nukita, D.
    3RD INTERNATIONAL CONFERENCE OF INDONESIA SOCIETY FOR REMOTE SENSING (ICOIRS 2017), 2018, 165