Integrating attention mechanism and multi-scale feature extraction for fall detection

被引:0
|
作者
Chen, Hao [1 ]
Gu, Wenye [2 ]
Zhang, Qiong [1 ]
Li, Xiujing [1 ]
Jiang, Xiaojing [1 ]
机构
[1] Nantong Inst Technol, Sch Comp & Informat Engn, Nantong, Peoples R China
[2] Nantong Univ, Affiliated Hosp, Nantong, Peoples R China
关键词
Fall events; Spatial attention; Efficient channel attention; Spatial pyramid pooling;
D O I
10.1016/j.heliyon.2024.e31614
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Addressing the critical need for accurate fall event detection due to their potentially severe impacts, this paper introduces the Spatial Channel and Pooling Enhanced You Only Look Once version 5 small (SCPE-YOLOv5s) model. Fall events pose a challenge for detection due to their varying scales and subtle pose features. To address this problem, SCPE-YOLOv5s introduces spatial attention to the Efficient Channel Attention (ECA) network, which significantly enhances the model's ability to extract features from spatial pose distribution. Moreover, the model integrates average pooling layers into the Spatial Pyramid Pooling (SPP) network to support the multi-scale extraction of fall poses. Meanwhile, by incorporating the ECA network into SPP, the model effectively combines global and local features to further enhance the feature extraction. This paper validates the SCPE-YOLOv5s on a public dataset, demonstrating that it achieves a mean Average Precision of 88.29 %, outperforming the You Only Look Once version 5 small by 4.87 %. Additionally, the model achieves 57.4 frames per second. Therefore, SCPE-YOLOv5s provides a novel solution for fall event detection.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Multi-scale feature fusion with attention mechanism for crowded road object detection
    Wu, Jingtao
    Dai, Guojun
    Zhou, Wenhui
    Zhu, Xudong
    Wang, Zengguan
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (02)
  • [12] Multi-scale feature fusion with attention mechanism for crowded road object detection
    Jingtao Wu
    Guojun Dai
    Wenhui Zhou
    Xudong Zhu
    Zengguan Wang
    Journal of Real-Time Image Processing, 2024, 21
  • [13] Residual attention mechanism and weighted feature fusion for multi-scale object detection
    Jie Zhang
    Qiye Qi
    Huanlong Zhang
    Qifan Du
    Fengxian Wang
    Xiaoping Shi
    Multimedia Tools and Applications, 2023, 82 : 40873 - 40889
  • [14] SSD with multi-scale feature fusion and attention mechanism
    Liu, Qiang
    Dong, Lijun
    Zeng, Zhigao
    Zhu, Wenqiu
    Zhu, Yanhui
    Meng, Chen
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [15] SSD with multi-scale feature fusion and attention mechanism
    Qiang Liu
    Lijun Dong
    Zhigao Zeng
    Wenqiu Zhu
    Yanhui Zhu
    Chen Meng
    Scientific Reports, 13 (1)
  • [16] Automated segmentation of skin lesion based on multi-scale feature extraction and attention mechanism
    College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan
    250355, China
    TechRxiv,
  • [17] MFFAMM: A Small Object Detection with Multi-Scale Feature Fusion and Attention Mechanism Module
    Qu, Zhong
    Han, Tongqiang
    Yi, Turning
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [18] Tomato leaf disease detection based on attention mechanism and multi-scale feature fusion
    Wang, Yong
    Zhang, Panxing
    Tian, Shuang
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [19] MFANet: Multi-scale feature fusion network with attention mechanism
    Wang, Gaihua
    Gan, Xin
    Cao, Qingcheng
    Zhai, Qianyu
    VISUAL COMPUTER, 2023, 39 (07): : 2969 - 2980
  • [20] MFANet: Multi-scale feature fusion network with attention mechanism
    Gaihua Wang
    Xin Gan
    Qingcheng Cao
    Qianyu Zhai
    The Visual Computer, 2023, 39 : 2969 - 2980