Prediction of critical dimensions for 3D TSV structures using artificial neural network

被引:0
|
作者
Li, Jia-Wei [1 ]
Su, Eugene [2 ]
Ho, Chao-Ching [2 ]
机构
[1] Natl Taipei Univ Technol, Grad Inst Automat Technol, Taipei, Taiwan
[2] Natl Taipei Univ Technol, Grad Inst Mfg Technol, Taipei, Taiwan
关键词
TSV (Through-Silicon Via); Electromagnetic Simulation; Finite-Difference Time-Domain (FDTD); Forward Network; Inverse Netwrok; Critical Dimensions (CD); Deep Learning Networks; Reflection Spectrum; OPTICAL SCATTEROMETRY; DIFFRACTION GRATINGS;
D O I
10.1117/12.3010132
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
TSV (Through-Silicon Via) is a vertical interconnection structure achieved by creating holes in the silicon substrate of a chip. This paper explores the subtle differences in the reflection characteristics of light across various TSV structures. Electromagnetic simulation software, namely, Lumerical FDTD, based on the Finite-Difference Time-Domain (FDTD) method, was employed to establish electromagnetic models for TSV structures. 3D-FDTD simulations calculate near-field electromagnetic field data and derive near-field reflection spectra. The dataset comprises different TSV structures with varying critical dimensions (CD) and their corresponding far-field reflection spectra obtained through simulation. Our approach introduces two deep learning networks: the forward network and the inverse network. Given the time-consuming nature of FDTD electromagnetic simulation tools when dealing with complex structures, the forward network is trained to rapidly predict reflection spectrum signal data corresponding to CD parameters, effectively replacing simulation software. Using a threshold of 1% to determine the accuracy of the spectral predictions, forward prediction achieves 100% accuracy. Similarly, the inverse network is trained to predict the CD parameters of TSV structures from the reflection spectrum signal, allowing for fast and accurate inference of the dimensions of TSV structures and the extraction of geometric parameters. In reverse prediction, the MAPE (Mean Absolute Percentage Error) for R-top, height, and R-bot remains consistently below 5%.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Rock Discontinuities Identification from 3D Point Clouds Using Artificial Neural Network
    Yunfeng Ge
    Bei Cao
    Huiming Tang
    Rock Mechanics and Rock Engineering, 2022, 55 : 1705 - 1720
  • [22] An artificial neural network for 3D localization of brainstem functional lesions
    Capozza, M
    Iannetti, GD
    Marx, JJ
    Cruccu, G
    Accornero, N
    MEDICAL DATA ANALYSIS, PROCEEDINGS, 2002, 2526 : 186 - 197
  • [23] Terrorism prediction using artificial neural network
    Soliman G.M.A.
    Abou-El-Enien T.H.M.
    Revue d'Intelligence Artificielle, 2019, 33 (02) : 81 - 87
  • [24] Prediction of Diabetes by using Artificial Neural Network
    Sapon, Muhammad Akmal
    Ismail, Khadijah
    Zainudin, Suehazlyn
    CIRCUITS, SYSTEM AND SIMULATION, 2011, 7 : 299 - 303
  • [25] 3D Objects Recognition Using Artificial Neural Networks
    Ortiz Correa, Diogo Santos
    Osorio, Fernando Santos
    2018 XLIV LATIN AMERICAN COMPUTER CONFERENCE (CLEI 2018), 2018, : 288 - 293
  • [26] 3D matters! 3D-RISM and 3D convolutional neural network for accurate bioaccumulation prediction
    Sosnin, Sergey
    Misin, Maksim
    Palmer, David S.
    Fedorov, Maxim V.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (32)
  • [27] Prediction 3-D Velocity for Ecuador by Artificial Neural Network RBF
    Tierra, A. R.
    IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (01) : 386 - 390
  • [28] Experimental and 3D Numerical Investigation on Proppant Distribution in a Perforation Cluster Involving the Artificial Neural Network Prediction
    Qu, Hai
    Chen, Xiangjun
    Hong, Jun
    Xu, Yang
    Li, Chengying
    Li, Zhelun
    Liu, Ying
    SPE JOURNAL, 2023, 28 (04): : 1650 - 1675
  • [29] Fabrication of 3D Packaging TSV using DRIE
    Puech, M.
    Thevenoud, J. M.
    Gruffat, J. M.
    Launay, N.
    Arnal, N.
    Godinat, P.
    DTIP 2008: SYMPOSIUM ON DESIGN, TEST, INTEGRATION AND PACKAGING OF MEMS/MOEMS, 2008, : 109 - 114
  • [30] Fabrication of 3D packaging TSV using DRIE
    Puech, M.
    Thevenoud, J. M.
    Gruffat, J. M.
    Launay, N.
    Arnal, N.
    Godinat, P.
    2008 IEEE/SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE, 2008, : 340 - 344