The prototype of the front-end electronics for STCF muon detector

被引:0
|
作者
Sun, Yang [1 ]
Wang, Chuan'ao [1 ]
He, Qian [3 ]
Wang, Bo [3 ]
Yin, Xiongcai [1 ]
Hu, Kun [3 ]
Li, Feng [1 ]
Jin, Ge [1 ,2 ]
机构
[1] Univ Sci & Technol China, State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China
[2] Hefei Natl Lab, Hefei, Peoples R China
[3] Shandong Univ, Inst Frontier & Interdisciplinary Sci, Key Lab Particle Phys & Particle Irradiat MOE, Qingdao 266237, Shandong, Peoples R China
基金
国家重点研发计划;
关键词
Super r-charm facility; Hybrid muon detector; Prototype of front-end readout electronics; Time measurement; TO-DIGITAL CONVERTER;
D O I
10.1016/j.nima.2024.169528
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The muon detector (MUD), serving as the outermost detector of the high-precision spectrometer in STCF, is used to provide muon identification in the presence of a significant pion background. The accuracy of muon identification relies heavily on excellent momentum resolution, which can be determined by their flight trajectory positions. Physical simulations of the measurement precision for reconstructed muons indicate that a spatial resolution of 2 cm is required. In the barrel MUD, a double-ended readout is required to determine the hit position, with a time resolution requirement of approximately 500 ps. To meet the readout requirements of the MUD, a comprehensive scheme for the front-end readout electronics of the STCF MUD is proposed, and a prototype of MUD readout electronics is developed. To validate the final 8-channel application-specific integrated circuit (ASIC) design, an 8-channel time-to-digital converter (TDC) is implemented using a field programmable gate array (FPGA). The results of the electronics tests demonstrate that the average root mean square (RMS) precision ranges from 14 to 16 ps for each channel within a 1 similar to 20 ns time interval. In the joint test with the detector, the system achieves a single-channel RMS precision of 297 ps, with a detection efficiency exceeding 95.5%. All indicators meet project requirements. This validates that the prototype is capable of preliminary evaluation and parameter optimization of the STCF MUD.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Front-end electronics for the CERES TPC-detector
    Baur, R
    Ernst, P
    Gramegna, G
    Richter, M
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1998, 409 (1-3): : 278 - 285
  • [32] Front-end readout development for the IFR muon detector at BaBar
    Cavallo, N
    Fabozzi, F
    Paolucci, P
    Parascandolo, L
    Parascandolo, P
    Piccolo, D
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1998, 409 (1-3): : 297 - 299
  • [33] Development of the CARIOCA front-end chip for the LHCb muon detector
    Bonivento, W
    Jarron, P
    Moraes, D
    Riegler, W
    dos Santos, F
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 491 (1-2): : 233 - 243
  • [34] A high rate silicon detector and front-end electronics prototype for single ion discrimination in particle therapy
    Fausti, F.
    Arcidiacono, R.
    Attili, A.
    Cartiglia, N.
    Cenna, F.
    Donetti, M.
    Ferrero, M.
    Giordanengo, S.
    Ali, O. Hammad
    Mandurrino, M.
    Manganaro, L.
    Monaco, V.
    Mazza, G.
    Sacchi, R.
    Sola, V.
    Staiano, A.
    Vignati, A.
    Cirio, R.
    [J]. 2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [35] Performance of a resistive plate chamber equipped with a new prototype of amplified front-end electronics in the ALICE detector
    Marchisone, Massimiliano
    [J]. HIGH ENERGY PARTICLE PHYSICS WORKSHOP 2017, 2017, 889
  • [36] Performance of the new integrated front-end electronics of the TRACE array commissioned with an early silicon detector prototype
    Capra, S.
    Mengoni, D.
    Duenas, J. A.
    John, P. R.
    Gadea, A.
    Aliaga, R. J.
    Dormard, J. J.
    Assie, M.
    Pullia, A.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 935 : 178 - 184
  • [37] Data flow simulations through the ATLAS muon front-end electronics
    Chapman, J
    Ball, R
    Kuah, J
    Mann, J
    Schneider, M
    Uzelac, J
    Hu, L
    [J]. PROCEEDINGS OF THE FIFTH WORKSHOP ON ELECTRONICS FOR LHC EXPERIMENTS, 1999, : 448 - 451
  • [38] The DO forward angle muon system front-end electronics design
    Alexeev, GD
    Baturitsky, MA
    Dvornikov, OV
    Khokhlov, AI
    Mikhailov, VA
    Odnokloubov, IA
    Shishkin, AA
    Tokmenin, VV
    Zhirikov, SF
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 473 (03): : 269 - 282
  • [39] Basic parameters of front-end microelectronic units of detector electronics
    Volkov, Yu. A.
    Ilyushchenko, I. I.
    [J]. INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2016, 59 (01) : 69 - 74
  • [40] A front-end readout Detector Board for the OpenPET electronics system
    Choong, W. -S.
    Abu-Nimeh, F.
    Moses, W. W.
    Peng, Q.
    Vu, C. Q.
    Wu, J. -Y.
    [J]. JOURNAL OF INSTRUMENTATION, 2015, 10