Integration of buried nanomagnet and silicon spin qubits in a one-dimensional fin structure

被引:0
|
作者
Iizuka, Shota [1 ]
Kato, Kimihiko [1 ]
Yagishita, Atsushi [1 ]
Asai, Hidehiro [1 ]
Ueda, Tetsuya [1 ]
Oka, Hiroshi [1 ]
Hattori, Junichi [1 ]
Ikegami, Tsutomu [1 ]
Fukuda, Koichi [1 ]
Mori, Takahiro [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan
关键词
buried wiring technology; large-scale integration; nanomagnets; quantum computers; silicon spin qubit array; QUANTUM PROCESSOR; HOT;
D O I
10.35848/1347-4065/ad59ea
中图分类号
O59 [应用物理学];
学科分类号
摘要
We adopt a buried nanomagnet (BNM) technology on a one-dimensional (1D) array of silicon spin qubits, and its availability was investigated using numerical simulations. The qubit array is formed in the center of the Si fin and the nanomagnet is buried in the lower lateral part of the qubits. The nanomagnet placed near the qubit generates a strong slanting magnetic field in the qubit, enabling X-gate operation approximately 15 times faster than in conventional cases. Furthermore, the formation of a BNM using a self-aligned process suppresses the dimensional variation of the nanomagnet caused by process variation, thereby mitigating the slanting field fluctuation and fidelity degradation. In addition, even for multiple qubits formed in the Si fin, the BNM with excess length generated a uniform slanting field, mitigating fidelity degradation and enabling all qubits to operate using a single-frequency microwave. Therefore, the proposed structure is useful for 1D integrated structures.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Spin interference in silicon one-dimensional rings
    Bagraev, N. T.
    Galkin, N. G.
    Gehlhoff, W.
    Klyachkin, L. E.
    Malyarenko, A. M.
    Shelykh, I. A.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 693 - +
  • [2] Spin interference in silicon one-dimensional rings
    T Bagraev, N.
    Galkin, N. G.
    Gehlhoff, W.
    Klyachkin, L. E.
    Malyarenko, A. M.
    Shelykh, I. A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (45) : L567 - L573
  • [3] Spin interference in silicon one-dimensional rings
    Bagraev, Nikolay T.
    Galkin, Nikolay G.
    Gehlhoff, Wolfgang
    Klyachkin, Leonid E.
    Malyarenko, Anna M.
    Shelykh, Ivan A.
    PHYSICA B-CONDENSED MATTER, 2006, 378-80 : 894 - 895
  • [4] Spin interference in silicon one-dimensional rings
    Bagraev, N. T.
    Galkin, N. G.
    Gehlhoff, W.
    Klyachkin, L. E.
    Malyarenko, A. M.
    Shelykh, I. A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY, 2007, 61 : 56 - 60
  • [5] Spin Interference In Silicon One-Dimensional Rings
    Bagraev, N. T.
    Galkin, N. G.
    Gehlhoff, W.
    Klyachkin, L. E.
    Malyarenko, A. M.
    Shelykh, I. A.
    PHYSICS OF SEMICONDUCTORS, 2009, 1199 : 457 - +
  • [6] Scalable Gate Architecture for a One-Dimensional Array of Semiconductor Spin Qubits
    Zajac, D. M.
    Hazard, T. M.
    Mi, X.
    Nielsen, E.
    Petta, J. R.
    PHYSICAL REVIEW APPLIED, 2016, 6 (05):
  • [7] Spin interference of holes in silicon one-dimensional rings
    Bagraev, Nikolay T.
    Galkin, Nikolay G.
    Gehlhoff, Wolfgang
    Klyachkin, Leonid E.
    Malyarenko, Anna M.
    Shelykh, Ivan A.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05): : 1338 - 1340
  • [8] Probing one-dimensional systems via noise magnetometry with single spin qubits
    Rodriguez-Nieva, Joaquin F.
    Agarwal, Kartiek
    Giamarchi, Thierry
    Halperin, Bertrand, I
    Lukin, Mikhail D.
    Demler, Eugene
    PHYSICAL REVIEW B, 2018, 98 (19)
  • [9] ERRORS IN ONE-DIMENSIONAL FIN SOLUTION
    IREY, RK
    JOURNAL OF HEAT TRANSFER, 1968, 90 (01): : 175 - &
  • [10] Strategies for integration of donor electron spin qubits in silicon
    Schenkel, T.
    Liddle, J. A.
    Bokor, J.
    Persaud, A.
    Park, S. J.
    Shangkuan, J.
    Lo, C. C.
    Kwon, S.
    Lyon, S. A.
    Tyryshkin, A. M.
    Rangelow, I. W.
    Sarov, Y.
    Schneider, D. H.
    Ager, J.
    de Sousa, R.
    MICROELECTRONIC ENGINEERING, 2006, 83 (4-9) : 1814 - 1817