Evaluation of the Transfemoral Bone-Implant Interface Properties Using Vibration Analysis

被引:1
|
作者
Mohamed, Mostafa [1 ]
Beaudry, Eric [1 ]
Shehata, Ahmed W. [1 ,2 ,3 ]
Raboud, Donald [1 ]
Hebert, Jacqueline S. [2 ,3 ,4 ]
Westover, Lindsey [1 ,2 ,3 ]
机构
[1] Univ Alberta, Fac Engn, Dept Mech Engn, Edmonton, AB, Canada
[2] Univ Alberta, Fac Med, Dept Biomed Engn, Edmonton, AB, Canada
[3] Univ Alberta, Fac Med & Dent, Edmonton, AB, Canada
[4] Univ Alberta, Fac Med & Dent, Dept Med, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Advanced system for implant stability testing; Bone-anchored implants; Transfemoral amputation; Vibration analysis; FREQUENCY-ANALYSIS; OSSEOINTEGRATION; STABILITY; RECONSTRUCTION; REHABILITATION; AMPUTEES; SYSTEM;
D O I
10.1007/s10439-024-03561-6
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Evaluating the bone-implant interface (BII) properties of osseointegrated transfemoral (TFA) implants is important for early failure detection and prescribing loads during rehabilitation. The objective of this work is to derive and validate a 1D finite element (FE) model of the Osseointegrated Prosthetic Limb (OPL) TFA system that can: (1) model its dynamic behaviour and (2) extract the BII properties. The model was validated by: (1) comparing the 1D FE formulation to the analytical and 3D FE solutions for a simplified cylinder, (2) comparing the vibration modes of the actual TFA geometry using 1D and 3D FE models, and (3) evaluating the BII properties for three extreme conditions (LOW, INTERMEDIATE, and HIGH) generated using 3D FE and experimental (where the implant was embedded, using different adhesives, in synthetic femurs) signals for additional validation. The modes predicted by the 1D FE model converged to the analytical and the 3D FE solutions for the cylinder. The 1D model also matched the 3D FE solution with a maximum frequency difference of 2.02% for the TFA geometry. Finally, the 1D model extracted the BII stiffness and the system's damping properties for the three conditions generated using the 3D FE simulations and the experimental INTERMEDIATE and HIGH signals. The agreement between the 1D FE and the 3D FE solutions for the TFA geometry indicates that the 1D model captures the system's dynamic behaviour. Distinguishing between the different BII conditions demonstrates the 1D model's potential use for the non-invasive clinical evaluation of the TFA BII properties.
引用
收藏
页码:2987 / 3008
页数:22
相关论文
共 50 条
  • [1] Molecular analysis of healing at a bone-implant interface
    Colnot, C.
    Romero, D. M.
    Huang, S.
    Rahman, J.
    Currey, J. A.
    Nanci, A.
    Brunski, J. B.
    Helms, J. A.
    JOURNAL OF DENTAL RESEARCH, 2007, 86 (09) : 862 - 867
  • [2] BIOMECHANICAL STRESS ANALYSIS OF BONE-IMPLANT INTERFACE
    Fanali, S.
    Tramonte, S. U.
    Brunelli, G.
    Carinci, F.
    EUROPEAN JOURNAL OF INFLAMMATION, 2011, 9 (02) : 25 - 31
  • [3] Elastography of the bone-implant interface
    Heriveaux, Yoann
    Vu-Hieu Nguyen
    Geiger, Didier
    Haiat, Guillaume
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [4] Elastography of the bone-implant interface
    Yoann Hériveaux
    Vu-Hieu Nguyen
    Didier Geiger
    Guillaume Haïat
    Scientific Reports, 9
  • [5] Strontium in the Bone-Implant Interface
    Vestermark, Marianne Toft
    DANISH MEDICAL BULLETIN, 2011, 58 (05)
  • [6] Engineering the Bone-Implant Interface
    Mangano, Francesco
    Maghaireh, Hassan
    Calvo-Guirado, Jose
    BIOMED RESEARCH INTERNATIONAL, 2018, 2018
  • [7] BONE-IMPLANT INTERFACE CHARACTERISTICS
    ALBREKTSSON, T
    ALBREKTSSON, B
    ACTA ORTHOPAEDICA SCANDINAVICA, 1987, 58 (06): : 715 - 717
  • [8] Proteoglycans at the bone-implant interface
    Klinger, MM
    Rahemtulla, F
    Prince, CW
    Lucas, LC
    Lemons, JE
    CRITICAL REVIEWS IN ORAL BIOLOGY & MEDICINE, 1998, 9 (04) : 449 - 463
  • [9] Mechanical properties of bone-implant interface: Analysis of hydroxyapatite coatings of varying crystallinity
    Chang, YL
    Krizan, KE
    Stanford, CM
    Keller, JC
    JOURNAL OF DENTAL RESEARCH, 1997, 76 : 1518 - 1518
  • [10] The bone-implant interface: A dynamic surface
    Goldberg, VM
    Jinno, T
    JOURNAL OF LONG-TERM EFFECTS OF MEDICAL IMPLANTS, 1999, 9 (1-2) : 11 - 21