Implicit Surface Representation Using Epanechnikov Mixture Regression

被引:0
|
作者
Liu, Boning [1 ]
Zheng, Zerong [2 ]
Liu, Yebin [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] NNkosmos Technol, Hangzhou 310000, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Three-dimensional displays; Shape; Solid modeling; Image reconstruction; Kernel; Optimization; Surface reconstruction; 3D compression; 3D reconstruction; 3D shape representation; epanechnikov mixture regression; implicit surface representation;
D O I
10.1109/LSP.2024.3421350
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a regression-based implicit surface representation using mixture-of-experts based on the Epanechnikov kernel (EK), a mathematical framework that does not depend on neural networks. The modeling method is implemented using signed distance fields (SDF), modeled using the expectation-maximization algorithm to iterate an optimal set of parameters of Epanechnikov mixture regression. The proposed pipeline achieves better reconstruction than the SDF itself and can be upsampled through mixture-of-experts-based interpolation without extra parameters and processing. Furthermore, the proposed method can efficiently realize data compression compared to meshes and SDF. As for the kernel theory, EK demonstrates a more accurate surface recovery than the Gaussian ones, which expands the applications for Epanechnikov-related theories and also shows potential for theoretical substitution for Gaussian-based modeling and representation.
引用
收藏
页码:1810 / 1814
页数:5
相关论文
共 50 条
  • [41] SYMBOLIC REGRESSION OF IMPLICIT EQUATIONS
    Schmidt, Michael
    Lipson, Hod
    GENETIC PROGRAMMING THEORY AND PRACTICE VII, 2010, : 73 - +
  • [42] CONSTRUCTIVE REGRESSION ON IMPLICIT REGIONS
    Kubrusly, Jessica
    Lopes, Helio
    ADVANCES AND APPLICATIONS IN STATISTICS, 2015, 45 (03) : 201 - 223
  • [43] PLAUSIBLE INFERENCE AND IMPLICIT REPRESENTATION
    BAUER, MI
    BEHAVIORAL AND BRAIN SCIENCES, 1993, 16 (03) : 452 - 453
  • [44] Implicit Representation of Molecular Surfaces
    Parulek, Julius
    Viola, Ivan
    IEEE PACIFIC VISUALIZATION SYMPOSIUM 2012, 2012, : 217 - 224
  • [45] Aerodynamic topology optimisation using an implicit representation and a multiobjective genetic algorithm
    Hutabarat, Windo
    Parks, Geoffrey T.
    Jarrett, Jerome P.
    Dawes, William N.
    Clarkson, P. John
    ARTIFICIAL EVOLUTION, 2008, 4926 : 148 - 159
  • [46] Representation of correlation functions in variational assimilation using an implicit diffusion operator
    Mirouze, I.
    Weaver, A. T.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (651) : 1421 - 1443
  • [47] Geometric representation of the swept volume of a generalized cutter using implicit surfaces
    Wang, Hongliang
    Guo, Ruifeng
    Peng, Jianjun
    Wang, Pin
    Liu, Xian
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2015, 51 (23): : 144 - 152
  • [48] 3D Keypoint Estimation Using Implicit Representation Learning
    Zhu, Xiangyu
    Du, Dong
    Huang, Haibin
    Ma, Chongyang
    Han, Xiaoguang
    COMPUTER GRAPHICS FORUM, 2023, 42 (05)
  • [49] Functional mixture regression
    Yao, Fang
    Fu, Yuejiao
    Lee, Thomas C. M.
    BIOSTATISTICS, 2011, 12 (02) : 341 - 353
  • [50] An Investigation of Emotion Prediction Uncertainty Using Gaussian Mixture Regression
    Dang, Ting
    Sethu, Vidhyasaharan
    Epps, Julien
    Ambikairajah, Eliathamby
    18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 1248 - 1252