Implicit Surface Representation Using Epanechnikov Mixture Regression

被引:0
|
作者
Liu, Boning [1 ]
Zheng, Zerong [2 ]
Liu, Yebin [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] NNkosmos Technol, Hangzhou 310000, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Three-dimensional displays; Shape; Solid modeling; Image reconstruction; Kernel; Optimization; Surface reconstruction; 3D compression; 3D reconstruction; 3D shape representation; epanechnikov mixture regression; implicit surface representation;
D O I
10.1109/LSP.2024.3421350
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a regression-based implicit surface representation using mixture-of-experts based on the Epanechnikov kernel (EK), a mathematical framework that does not depend on neural networks. The modeling method is implemented using signed distance fields (SDF), modeled using the expectation-maximization algorithm to iterate an optimal set of parameters of Epanechnikov mixture regression. The proposed pipeline achieves better reconstruction than the SDF itself and can be upsampled through mixture-of-experts-based interpolation without extra parameters and processing. Furthermore, the proposed method can efficiently realize data compression compared to meshes and SDF. As for the kernel theory, EK demonstrates a more accurate surface recovery than the Gaussian ones, which expands the applications for Epanechnikov-related theories and also shows potential for theoretical substitution for Gaussian-based modeling and representation.
引用
收藏
页码:1810 / 1814
页数:5
相关论文
共 50 条
  • [1] Three-dimensional Epanechnikov mixture regression in image coding☆
    Liu, Boning
    Zhao, Yan
    Jiang, Xiaomeng
    Wang, Shigang
    [J]. SIGNAL PROCESSING, 2021, 185
  • [2] AN IMAGE CODING APPROACH BASED ON MIXTURE-OF-EXPERTS REGRESSION USING EPANECHNIKOV KERNEL
    Liu, Boning
    Zhao, Yan
    Jiang, Xiaomeng
    Wang, Shigang
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1807 - 1811
  • [3] 4D Epanechnikov Mixture Regression in LF Image Compression
    Liu, Boning
    Zhao, Yan
    Jiang, Xiaomeng
    Wang, Shigang
    Wei, Jian
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (06) : 3906 - 3922
  • [4] 3-D Epanechnikov Mixture Regression in integral imaging compression
    Liu, Boning
    Zhao, Yan
    Jiang, Xiaomeng
    Wang, Shigang
    Wei, Jian
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 81
  • [5] Mesh fusion using a new and improved implicit vector field surface representation
    Fournier, Marc
    Dischler, Jean-Michel
    Bechmann, Dominique
    [J]. PROCEEDINGS OF THE SEVENTH IASTED INTERNATIONAL CONFERENCE ON VISUALIZATION, IMAGING, AND IMAGE PROCESSING, 2007, : 41 - +
  • [6] Surface Normal Clustering for Implicit Representation of Manhattan Scenes
    Popovic, Nikola
    Paudel, Danda Pani
    Van Gool, Luc
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 17814 - 17824
  • [7] Statistical Modeling: A New Regression Curve Approximation using Mixed Estimators Truncated Spline and Epanechnikov Kernel
    Sifriyani, Andrea Tri Rian
    Dani, Andrea Tri Rian
    Fauziyah, Meirinda
    Budiantara, I. Nyoman
    [J]. ENGINEERING LETTERS, 2023, 31 (04) : 1649 - 1655
  • [8] Implicit Representation in Genetic Algorithms Using Redundancy
    Raich, Anne M.
    Ghaboussi, Jamshid
    [J]. EVOLUTIONARY COMPUTATION, 1997, 5 (03) : 277 - 302
  • [9] DSR: Dynamical Surface Representation as Implicit Neural Networks for Protein
    Sun, Daiwen
    Huang, He
    Li, Yao
    Gong, Xinqi
    Ye, Qiwei
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [10] Automatic segmentation and implicit surface representation of dynamic cardiac data
    Thai, Andy
    Gradus-Pizlo, Irmina
    Pizlo, Zygmunt
    Sahin, Hakan
    Gopi, M.
    [J]. VISUAL COMPUTER, 2024, 40 (07): : 4869 - 4883