Quantized Context Based LIF Neurons for Recurrent Spiking Neural Networks in 45nm

被引:0
|
作者
Bezugam, Sai Sukruth [1 ]
Wu, Yihao [1 ]
Yoo, JaeBum [1 ]
Strukov, Dmitri [1 ]
Kim, Bongjin [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
Spiking neural network accelerator; hardware software codesign; neocortical neurons; CLIF neurons;
D O I
10.1109/NICE61972.2024.10548306
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we propose the first hardware implementation of a context-based recurrent spiking neural network (RSNN) emphasizing on integrating dual information streams within the neocortical pyramidal neurons specifically Context-Dependent Leaky Integrate and Fire (CLIF) neuron models, essential element in RSNN. We present a quantized version of the CLIF neuron (qCLIF), developed through a hardware-software codesign approach utilizing the sparse activity of RSNN. Implemented in a 45nm technology node, the qCLIF is compact (900um(2)) and achieves a high accuracy of 90% despite 8 bit quantization on DVS gesture classification dataset. Our analysis spans a network configuration from 10 to 200 qCLIF neurons, supporting up to 82k synapses within a 1.86 mm(2) footprint, demonstrating scalability and efficiency.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Similarity-based context aware continual learning for spiking neural networks
    Han, Bing
    Zhao, Feifei
    Li, Yang
    Kong, Qingqun
    Li, Xianqi
    Zeng, Yi
    NEURAL NETWORKS, 2025, 184
  • [32] CBP-QSNN: Spiking Neural Networks Quantized Using Constrained Backpropagation
    Yoo, Donghyung
    Jeong, Doo Seok
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2023, 13 (04) : 1137 - 1146
  • [33] Leaky integrate-and-fire neurons based on perovskite memristor for spiking neural networks
    Yang, Jia-Qin
    Wang, Ruopeng
    Wang, Zhan-Peng
    Ma, Qin-Yuan
    Mao, Jing-Yu
    Ren, Yi
    Yang, Xiaoyang
    Zhou, Ye
    Han, Su-Ting
    NANO ENERGY, 2020, 74
  • [34] On-Board Networks with Radiation-Hardened 45nm SOI Standard Components
    Rickard, Dale
    Hutcheson, David
    Santee, Steven
    Pirkl, Dan
    Robertson, Jeffrey
    Stanley, Daniel
    Ross, Jason
    Hanley, Mary
    Trippe, Daniel
    Fleming, Patrick
    Livoti, James
    Nisar, Ashraf
    Robertazzi, Jeannine
    Federico, Jacob
    Lauper, Bryon
    Knowles, Kenneth
    Blumen, Arthur
    Koehler, Jennifer
    Gilliam, Jane
    Saari, Brian
    Shaffer, Mark
    Richards, Randall
    Chan, Ernesto
    Berger, Richard
    Matta, John
    2015 IEEE AEROSPACE CONFERENCE, 2015,
  • [35] Modeling weakly connected networks of neural oscillators with spiking neurons
    Valova, I
    Gueorguieva, N
    Georgiev, G
    INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 810 - 815
  • [36] Networks of spiking neurons: The third generation of neural network models
    Maass, W
    NEURAL NETWORKS, 1997, 10 (09) : 1659 - 1671
  • [37] Auditory Anomaly Detection using Recurrent Spiking Neural Networks
    Kshirasagar, Shreya
    Cramer, Benjamin
    Guntoro, Andre
    Mayr, Christian
    2024 IEEE 6TH INTERNATIONAL CONFERENCE ON AI CIRCUITS AND SYSTEMS, AICAS 2024, 2024, : 278 - 281
  • [38] Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks
    Pyle, Ryan
    Rosenbaum, Robert
    PHYSICAL REVIEW LETTERS, 2017, 118 (01)
  • [39] Signal Denoising with Recurrent Spiking Neural Networks and Active Tuning
    Ciurletti, Melvin
    Traub, Manuel
    Karlbauer, Matthias
    Butz, Martin, V
    Otte, Sebastian
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2021, PT V, 2021, 12895 : 220 - 232
  • [40] Multitask computation through dynamics in recurrent spiking neural networks
    Mechislav M. Pugavko
    Oleg V. Maslennikov
    Vladimir I. Nekorkin
    Scientific Reports, 13