A Note on Hamiltonian-intersecting families of graphs
被引:0
|
作者:
Leader, Imre
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, EnglandUniv Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
Leader, Imre
[1
]
Randelovic, Zarko
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, EnglandUniv Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
Randelovic, Zarko
[1
]
Tan, Ta Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Fac Sci, Inst Math Sci, Kuala Lumpur 50603, MalaysiaUniv Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
Tan, Ta Sheng
[2
]
机构:
[1] Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
[2] Univ Malaya, Fac Sci, Inst Math Sci, Kuala Lumpur 50603, Malaysia
How many graphs on an n-point set can we find such that any two have connected intersection? Berger, Berkowitz, Devlin, Doppelt, Durham, Murthy and Vemuri showed that the maximum is exactly 1/2n-1 of all graphs. Our aim in this short note is to give a 'directed' version of this result; we show that a family of oriented graphs such that any two have strongly-connected intersection has size at most 1/3n of all oriented graphs. We also show that a family of graphs such that any two have Hamiltonian intersection has size at most 1/2n of all graphs, verifying a conjecture of the above authors. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
机构:
Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, EnglandQueen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
Ellis, David
Lifshitz, Noam
论文数: 0引用数: 0
h-index: 0
机构:
Hebrew Univ Jerusalem, Einstein Inst Math, Edmond J Safra Campus, IL-9190401 Jerusalem, IsraelQueen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England