Contrastive Document Representation Learning with Graph Attention Networks

被引:0
|
作者
Xu, Peng [1 ]
Chen, Xinchi [1 ]
Ma, Xiaofei [1 ]
Huang, Zhiheng [1 ]
Xiang, Bing [1 ]
机构
[1] AWS AI Labs, Seattle, WA 98019 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent progress in pretrained Transformer-based language models has shown great success in learning contextual representation of text. However, due to the quadratic selfattention complexity, most of the pretrained Transformers models can only handle relatively short text. It is still a challenge when it comes to modeling very long documents. In this work, we propose to use a graph attention network on top of the available pretrained Transformers model to learn document embeddings. This graph attention network allows us to leverage the high-level semantic structure of the document. In addition, based on our graph document model, we design a simple contrastive learning strategy to pretrain our models on a large amount of unlabeled corpus. Empirically, we demonstrate the effectiveness of our approaches in document classification and document retrieval tasks.
引用
收藏
页码:3874 / 3884
页数:11
相关论文
共 50 条
  • [1] Learning Graph Topology Representation with Attention Networks
    Qi, Yuanyuan
    Zhang, Jiayue
    Xu, Weiran
    Guo, Jun
    Zhang, Honggang
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2020, : 1 - 4
  • [2] Contrastive Learning with Heterogeneous Graph Attention Networks on Short Text Classification
    Sun, Zhongtian
    Harit, Anoushka
    Cristea, Alexandra, I
    Yu, Jialin
    Shi, Lei
    Al Moubayed, Noura
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [3] Cross-scale contrastive triplet networks for graph representation learning☆
    Liu, Yanbei
    Shan, Wanjin
    Wang, Xiao
    Xiao, Zhitao
    Geng, Lei
    Zhang, Fang
    Du, Dongdong
    Pang, Yanwei
    [J]. PATTERN RECOGNITION, 2024, 145
  • [4] Community-Enhanced Contrastive Siamese Networks for Graph Representation Learning
    Li, Yafang
    Wang, Wenbo
    Ma, Guixiang
    Zu, Baokai
    [J]. KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 300 - 314
  • [5] AGCL: Adaptive Graph Contrastive Learning for graph representation learning
    Yu, Jiajun
    Jia, Adele Lu
    [J]. NEUROCOMPUTING, 2024, 566
  • [6] Contrastive Graph Learning with Graph Convolutional Networks
    Nagendar, G.
    Sitaram, Ramachandrula
    [J]. DOCUMENT ANALYSIS SYSTEMS, DAS 2022, 2022, 13237 : 96 - 110
  • [7] Molecular representation contrastive learning via transformer embedding to graph neural networks
    Liu, Yunwu
    Zhang, Ruisheng
    Li, Tongfeng
    Jiang, Jing
    Ma, Jun
    Yuan, Yongna
    Wang, Ping
    [J]. APPLIED SOFT COMPUTING, 2024, 164
  • [8] Supervised contrastive learning for graph representation enhancement
    Ghayekhloo, Mohadeseh
    Nickabadi, Ahmad
    [J]. NEUROCOMPUTING, 2024, 588
  • [9] Graph Contrastive Learning with Positional Representation for Recommendation
    Yi, Zixuan
    Ounis, Iadh
    Macdonald, Craig
    [J]. ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT II, 2023, 13981 : 288 - 303
  • [10] Deep Clustering by Graph Attention Contrastive Learning
    Liu, Ming
    Liu, Cong
    Fu, Xiaoyuan
    Wang, Jing
    Li, Jiankun
    Qi, Qi
    Liao, Jianxin
    [J]. ELECTRONICS, 2023, 12 (11)