DFD-SLAM: Visual SLAM with Deep Features in Dynamic Environment

被引:1
|
作者
Qian, Wei [1 ]
Peng, Jiansheng [1 ,2 ,3 ,4 ]
Zhang, Hongyu [1 ]
机构
[1] Guangxi Univ Sci & Technol, Coll Automat, Liuzhou 545000, Peoples R China
[2] Hechi Univ, Dept Artificial Intelligence & Mfg, Hechi 547000, Peoples R China
[3] Hechi Univ, Educ Dept Guangxi Zhuang Autonomous Reg, Key Lab AI & Informat Proc, Hechi 547000, Peoples R China
[4] Hechi Univ, Sch Chem & Bioengn, Guangxi Key Lab Sericulture Ecol & Appl Intelligen, Hechi 546300, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 11期
基金
中国国家自然科学基金;
关键词
visual SLAM; deep features; dynamic SLAM; YOLOv8; HFNet; VERSATILE;
D O I
10.3390/app14114949
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Visual SLAM technology is one of the important technologies for mobile robots. Existing feature-based visual SLAM techniques suffer from tracking and loop closure performance degradation in complex environments. We propose the DFD-SLAM system to ensure outstanding accuracy and robustness across diverse environments. Initially, building on the ORB-SLAM3 system, we replace the original feature extraction component with the HFNet network and introduce a frame rotation estimation method. This method determines the rotation angles between consecutive frames to select superior local descriptors. Furthermore, we utilize CNN-extracted global descriptors to replace the bag-of-words approach. Subsequently, we develop a precise removal strategy, combining semantic information from YOLOv8 to accurately eliminate dynamic feature points. In the TUM-VI dataset, DFD-SLAM shows an improvement over ORB-SLAM3 of 29.24% in the corridor sequences, 40.07% in the magistrale sequences, 28.75% in the room sequences, and 35.26% in the slides sequences. In the TUM-RGBD dataset, DFD-SLAM demonstrates a 91.57% improvement over ORB-SLAM3 in highly dynamic scenarios. This demonstrates the effectiveness of our approach.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] An Enhanced Visual SLAM Supported by the Integration of Plane Features for the Indoor Environment
    Zi, Bingxin
    Wang, Haiying
    Santos, Jose
    Zheng, Huiru
    2022 IEEE 12TH INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN 2022), 2022,
  • [32] Radar SLAM using visual features
    Jonas Callmer
    David Törnqvist
    Fredrik Gustafsson
    Henrik Svensson
    Pelle Carlbom
    EURASIP Journal on Advances in Signal Processing, 2011
  • [33] A real-time semantic visual SLAM for dynamic environment based on deep learning and dynamic probabilistic propagation
    Liang Chen
    Zhi Ling
    Yu Gao
    Rongchuan Sun
    Sheng Jin
    Complex & Intelligent Systems, 2023, 9 : 5653 - 5677
  • [34] DNIV-SLAM: Neural Implicit Visual SLAM in Dynamic Environments
    Yang, Feng
    Wang, Yanbo
    Tan, Liwen
    Li, Mingrui
    Shan, Hongjian
    Pan, Peng
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT X, 2025, 15040 : 33 - 47
  • [35] ATY-SLAM: A Visual Semantic SLAM for Dynamic Indoor Environments
    Qi, Hao
    Hu, Zhuhua
    Xiang, Yunfeng
    Cai, Dupeng
    Zhao, Yaochi
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 3 - 14
  • [36] A real-time semantic visual SLAM for dynamic environment based on deep learning and dynamic probabilistic propagation
    Chen, Liang
    Ling, Zhi
    Gao, Yu
    Sun, Rongchuan
    Jin, Sheng
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (05) : 5653 - 5677
  • [37] DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments
    Yu, Chao
    Liu, Zuxin
    Liu, Xin-Jun
    Xie, Fugui
    Yang, Yi
    Wei, Qi
    Fei, Qiao
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 1168 - 1174
  • [38] OFM-SLAM: A Visual Semantic SLAM for Dynamic Indoor Environments
    Zhao, Xiong
    Zuo, Tao
    Hu, Xinyu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [39] Semantic -based Dynamic Object Separation Algorithm for Visual SLAM in Dynamic Environment
    Luo, Qingliang
    Wang, Shuting
    Xie, Yuanlong
    Yan, Yiming
    Li, Hu
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 937 - 942
  • [40] A visual SLAM algorithm based on fuzzy clustering for removing dynamic features
    Zhou, Qinghui
    Zhang, Chenlong
    He, Yuping
    Huang, Jie
    TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 2023, 47 (03) : 299 - 307