On three-dimensional q-Riordan arrays

被引:0
|
作者
Fang, Gang [2 ]
Koparal, Sibel [3 ]
Omur, Nese [1 ]
Duran, Omer [1 ]
Khan, Waseem Ahmad [4 ]
机构
[1] Kocaeli Univ, Dept Math, TR-41380 Kocaeli, Turkiye
[2] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
[3] Bursa Uludag Univ, Dept Math, TR-16059 Bursa, Turkiye
[4] Prince Mohammad Bin Fahd Univ, Dept Math & Nat Sci, POB 1664, Al Khobar 31952, Saudi Arabia
基金
中国国家自然科学基金;
关键词
q-Riordan arrays; three-dimensional matrices; q-binomial coefficients; generating functions; PASCAL MATRIX; NUMBERS;
D O I
10.1515/dema-2024-0005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we define three-dimensional q-Riordan arrays and q-Riordan representations for these arrays. Also, we give four cases of infinite multiplication three-dimensional matrices of these arrays. As applications, we obtain three-dimensional q-Pascal-like matrix and its inverse matrix by Heine's binomial formula, using combinatorial identities. Finally, we consider the generalization of three-dimensional q-Pascal-like matrix and give some identities involving q-binomial coefficients.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Electromagnetic interaction of chiral particles in three-dimensional arrays
    Simovski, CR
    Belov, PA
    Kondratjev, MS
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1999, 13 (02) : 189 - 204
  • [32] A Compact Architecture for Three-Dimensional Neural Microelectrode Arrays
    Perlin, Gayatri E.
    Wise, Kensall D.
    2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 5806 - 5809
  • [33] Two- and three-dimensional arrays of magnetic microspheres
    Wen, WJ
    Wang, N
    Zheng, DW
    Chen, C
    Tu, KN
    JOURNAL OF MATERIALS RESEARCH, 1999, 14 (04) : 1186 - 1189
  • [34] Students' understanding of three-dimensional rectangular arrays of cubes
    Battista, MT
    Clements, DH
    JOURNAL FOR RESEARCH IN MATHEMATICS EDUCATION, 1996, 27 (03) : 258 - 292
  • [35] Electrical Contacts to Three-Dimensional Arrays of Carbon Nanotubes
    Cummings, Aron W.
    Varennes, Julien
    Leonard, Francois
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2013, 12 (06) : 1166 - 1172
  • [36] Three-dimensional magnetization needle arrays with controllable orientation
    Luo, Jianjun
    Zhang, Henwen
    Wang, Sicong
    Shi, Liu
    Zhu, Zhuqing
    Gu, Bing
    Wang, Xiaolei
    Li, Xiangping
    OPTICS LETTERS, 2019, 44 (04) : 727 - 730
  • [37] Three-dimensional carbon nanowall field emission arrays
    Stratakis, E.
    Giorgi, R.
    Barberoglou, M.
    Dikonimos, Th.
    Salernitano, E.
    Lisi, N.
    Kymakis, E.
    APPLIED PHYSICS LETTERS, 2010, 96 (04)
  • [38] Frequency invariant beamforming for two-dimensional and three-dimensional arrays
    Liu, Wei
    Weiss, Stephan
    McWhirter, John G.
    Proudler, Ian K.
    SIGNAL PROCESSING, 2007, 87 (11) : 2535 - 2543
  • [39] Generalized Riordan arrays
    Wang, Weiping
    Wang, Tianming
    DISCRETE MATHEMATICS, 2008, 308 (24) : 6466 - 6500
  • [40] Complementary Riordan arrays
    Luzon, Ana
    Merlini, Donatella
    Moron, Manuel A.
    Sprugnoli, Renzo
    DISCRETE APPLIED MATHEMATICS, 2014, 172 : 75 - 87