Novel high-order explicit energy-preserving schemes for NLS-type equations based on the Lie-group method
被引:0
|
作者:
Yin, Fengli
论文数: 0引用数: 0
h-index: 0
机构:
Zhoukou Normal Univ, Sch Math & Stat, Zhoukou 466000, Peoples R ChinaZhoukou Normal Univ, Sch Math & Stat, Zhoukou 466000, Peoples R China
Yin, Fengli
[1
]
Xu, Zhuangzhi
论文数: 0引用数: 0
h-index: 0
机构:
Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Peoples R ChinaZhoukou Normal Univ, Sch Math & Stat, Zhoukou 466000, Peoples R China
Xu, Zhuangzhi
[2
]
Fu, Yayun
论文数: 0引用数: 0
h-index: 0
机构:
Xuchang Univ, Sch Sci, Henan Joint Int Res Lab High Performance Computat, Xuchang 461000, Peoples R ChinaZhoukou Normal Univ, Sch Math & Stat, Zhoukou 466000, Peoples R China
Fu, Yayun
[3
]
机构:
[1] Zhoukou Normal Univ, Sch Math & Stat, Zhoukou 466000, Peoples R China
[2] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Peoples R China
[3] Xuchang Univ, Sch Sci, Henan Joint Int Res Lab High Performance Computat, Xuchang 461000, Peoples R China
In this paper, by taking the NLS-type equations as examples, we propose a novel high -order explicit energy -preserving Lie -group method for Hamiltonian PDEs. The main idea is to combine recently developed generalized SAV (G-SAV) approach (Cheng et al., 2021) and explicit Lie group method, in which the fourth -order or higher -order Lie group method only composes two exponentials in each stage, and this is the key point that the proposed methods can preserve energy of Hamiltonian PDEs. This is our first attempt to construct high -order explicit energypreserving methods without using projection technique (Hairer et al., 2006 [14]), and some stability conclusions of our proposed methods for the NLS-type equations are also presented. Finally, we present 2D and 3D numerical simulations to demonstrate the stability and accuracy.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, Beijing 100190, Peoples R China
Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, Beijing 100190, Peoples R China
Hou, Baohui
Liang, Dong
论文数: 0引用数: 0
h-index: 0
机构:
York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, CanadaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, Beijing 100190, Peoples R China
机构:
Nanjing Vocat Coll Informat Technol, Dept Basic Sci, Nanjing 210023, Peoples R ChinaNanjing Vocat Coll Informat Technol, Dept Basic Sci, Nanjing 210023, Peoples R China
Cui, Jin
Fu, Yayun
论文数: 0引用数: 0
h-index: 0
机构:
Xuchang Univ, Sch Sci, Henan Joint Int Res Lab High Performance Computat, Xuchang 461000, Peoples R ChinaNanjing Vocat Coll Informat Technol, Dept Basic Sci, Nanjing 210023, Peoples R China