Short nanotubular Fe-N-C catalysts with curved catalytic sites and contributing regions for oxygen reduction reaction

被引:1
|
作者
Li, Ruixue [1 ]
Hao, Yun [1 ]
Liu, Yuhan [1 ]
Li, Peng [1 ]
Liu, Jingjun [1 ]
机构
[1] Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, 15 North Third Ring East Rd, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe-N-C; Solid-phase thermal migration; Off-plane; Oxygen reduction reaction; SOLID-PHASE SYNTHESIS; NONPRECIOUS METAL-CATALYSTS; NITROGEN-DOPED CARBON; POROUS-CARBON; MESOPOROUS CARBON; ORGANIC FRAMEWORK; ORR ACTIVITY; PERFORMANCE; ELECTROCATALYSTS; PRECURSOR;
D O I
10.1016/j.jallcom.2024.174002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The substantial advances of non-precious Fe-N-C materials with both high activity and stability to replace platinum-based catalysts for oxygen reduction reaction (ORR) in fuel cells remain a great challenge, since their intrinsic active site design and contributing microstructure exploration are still unclear. Herein, we propose a solid-phase thermal migration strategy to synthesize Fe, N co-doped nanocarbons with a short nanotubular structure, using ferrocene as Fe source and polyaniline (PANI) as N-doped carbon nanotubes (NCNTs) source. In acidic and alkaline environments, the thermally activated Fe-N-C exhibits efficient ORR performance, and half-wave potential is 30 mV higher than a commercial Pt/C (JM, 20 wt% Pt) in alkaline medium and only 100 mV less than the Pt/C in acidic media. Impressively, the catalyst used in zinc-air battery exhibits an outstanding power density of 144.74 mW center dot cm(-2), higher than the one assembled by the Pt/C (125.67 mW center dot cm(-2)). Combining experimental and density functional theory (DFT) calculation results, the superior ORR activity should be attributed to the formation of the efficient off-plane Fe-pyridinic-N-4 species at end of the nanotubes. More important, these zigzag-type Fe-pyridinic-N-4 sites at the end regions serve as the main active sites, leading to a higher ORR activity. This work opens a door to clarify the active catalytic site types and the contributing microregions of the Fe-N-C catalysts, providing ideas for designing non-noble metal catalysts with curved surfaces and rich edge structures.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Fe-N-C/Fe nanoparticle composite catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells
    Liu, Shiyang
    Meyer, Quentin
    Li, Yibing
    Zhao, Tingwen
    Su, Zhen
    Ching, Karin
    Zhao, Chuan
    CHEMICAL COMMUNICATIONS, 2022, 58 (14) : 2323 - 2326
  • [42] Oxygen-enriched Fe-N-C electrocatalyst for efficient oxygen reduction reaction
    Wang, Lang
    Zhang, Yonghang
    Zhou, Linxiang
    Luo, Guangtao
    Meng, Zhiwei
    Jin, Haodong
    Zhu, Enze
    Xu, Mingli
    JOURNAL OF SOLID STATE CHEMISTRY, 2024, 339
  • [43] On the Influence of Oxygen on the Degradation of Fe-N-C Catalysts
    Kumar, Kavita
    Dubau, Laetitia
    Mermoux, Michel
    Li, Jingkun
    Zitolo, Andrea
    Nelayah, Jaysen
    Jaouen, Frederic
    Maillard, Frederic
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (08) : 3235 - 3243
  • [44] The role of nitrogen sources and hydrogen adsorption on the dynamic stability of Fe-N-C catalysts in oxygen reduction reaction
    Huang, Zhou
    Li, Fuhua
    Liu, Yongduo
    Chen, Siguo
    Wei, Zidong
    Tang, Qing
    CHEMICAL SCIENCE, 2024, 15 (03) : 1132 - 1142
  • [45] Strain-controlled spin regulation in Fe-N-C catalysts for enhanced oxygen reduction reaction activity
    Yu, Mingyuan
    Wu, Jiaxiang
    Chen, Yashi
    Du, Yongping
    Li, Ang
    Kan, Erjun
    Zhan, Cheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (36) : 24530 - 24541
  • [46] Structure-Property Relationship of Cryogel-Based Fe-N-C Catalysts for the Oxygen Reduction Reaction
    Roiron, Camille
    Celle, Caroline
    Jacques, Pierre-Andre
    Heitzmann, Marie
    Simonato, Jean-Pierre
    ENERGY & FUELS, 2021, 35 (20) : 16814 - 16821
  • [47] Highly-defective Fe-N-C catalysts towards pH-Universal oxygen reduction reaction
    Wei, Xiaoqian
    Luo, Xin
    Wang, Hengjia
    Gu, Wenling
    Cai, Weiwei
    Lin, Yuehe
    Zhu, Chengzhou
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 263
  • [48] Structure-Property Relationship of Cryogel-Based Fe-N-C Catalysts for the Oxygen Reduction Reaction
    Roiron, Camille
    Celle, Caroline
    Jacques, Pierre-André
    Heitzmann, Marie
    Simonato, Jean-Pierre
    Energy and Fuels, 2021, 35 (20): : 16814 - 16821
  • [49] Incorporation of Activated Biomasses in Fe-N-C Catalysts for Oxygen Reduction Reaction with Enhanced Stability in Acidic Media
    Mueller-Huelstede, Julia
    Schonvogel, Dana
    Schmies, Henrike
    Wagner, Peter
    Dyck, Alexander
    Wark, Michael
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (07) : 6912 - 6922
  • [50] Multilayer graphene effects on Fe-N-C catalysts: elucidating atomic aggregation and oxygen reduction reaction activity
    Hu, Xiuli
    Li, Xiang
    Su, Neil Qiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2025,